mtl-aas/README.md
2020-04-27 19:16:16 +01:00

260 lines
7 KiB
Markdown

<figure>
<img src="assets/logo.png" alt="py-metric-temporal logic logo" width=300px>
<figcaption>
A library for manipulating and evaluating metric temporal logic.
</figcaption>
</figure>
[![Build Status](https://cloud.drone.io/api/badges/mvcisback/py-metric-temporal-logic/status.svg)](https://cloud.drone.io/mvcisback/py-metric-temporal-logic)
[![codecov](https://codecov.io/gh/mvcisback/py-metric-temporal-logic/branch/master/graph/badge.svg)](https://codecov.io/gh/mvcisback/py-metric-temporal-logic)
[![PyPI version](https://badge.fury.io/py/metric-temporal-logic.svg)](https://badge.fury.io/py/metric-temporal-logic)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![DOI](https://zenodo.org/badge/72686883.svg)](https://zenodo.org/badge/latestdoi/72686883)
<!-- markdown-toc start - Don't edit this section. Run M-x markdown-toc-generate-toc again -->
**Table of Contents**
- [About](#about)
- [Installation](#installation)
- [Usage](#usage)
- [Python Operator API](#python-operator-api)
- [Propositional logic (using python syntax)](#propositional-logic-using-python-syntax)
- [Modal Logic (using python syntax)](#modal-logic-using-python-syntax)
- [String based API](#string-based-api)
- [Propositional logic (parse api)](#propositional-logic-parse-api)
- [Modal Logic (parser api)](#modal-logic-parser-api)
- [Boolean Evaluation](#boolean-evaluation)
- [Quantitative Evaluate (Signal Temporal Logic)](#quantitative-evaluate-signal-temporal-logic)
- [Utilities](#utilities)
- [Similar Projects](#similar-projects)
- [Citing](#citing)
<!-- markdown-toc end -->
# About
Python library for working with Metric Temporal Logic (MTL). Metric
Temporal Logic is an extension of Linear Temporal Logic (LTL) for
specifying properties over time series (See [Alur][1]). Some practical examples are
given in the usage.
# Installation
If you just need to use `metric-temporal-logic`, you can just run:
`$ pip install metric-temporal-logic`
For developers, note that this project uses the
[poetry](https://poetry.eustace.io/) python package/dependency
management tool. Please familarize yourself with it and then
run:
`$ poetry install`
# Usage
To begin, we import `mtl`.
```python
import mtl
```
There are **two** APIs for interacting with the `mtl` module. Namely, one can specify the MTL expression using:
1. [Python Operators](#python-operator-api).
2. [Strings + The parse API](#string-based-api).
We begin with the Python Operator API:
## Python Operator API
### Propositional logic (using python syntax)
```python
a, b = mtl.parse('a'), mtl.parse('b')
phi0 = ~a
phi1 = a & b
phi2 = a | b
phi3 = a ^ b
phi4 = a.iff(b)
phi5 = a.implies(b)
```
### Modal Logic (using python syntax)
```python
a, b = mtl.parse('a'), mtl.parse('b')
# Eventually `a` will hold.
phi1 = a.eventually()
# `a & b` will always hold.
phi2 = (a & b).always()
# `a` until `b`
phi3 = a.until(b)
# `a` weak until `b`
phi4 = a.weak_until(b)
# Whenever `a` holds, then `b` holds in the next two time units.
phi5 = (a.implies(b.eventually(lo=0, hi=2))).always()
# We also support timed until.
phi6 = a.timed_until(b, lo=0, hi=2)
# `a` holds in two time steps.
phi7 = a >> 2
```
## String based API
### Propositional logic (parse api)
```python
# - Lowercase strings denote atomic predicates.
phi0 = mtl.parse('atomicpred')
# - infix operators need to be surrounded by parens.
phi1 = mtl.parse('((a & b & c) | d | e)')
phi2 = mtl.parse('(a -> b) & (~a -> c)')
phi3 = mtl.parse('(a -> b -> c)')
phi4 = mtl.parse('(a <-> b <-> c)')
phi5 = mtl.parse('(x ^ y ^ z)')
# - Unary operators (negation)
phi6 = mtl.parse('~a')
phi7 = mtl.parse('~(a)')
```
### Modal Logic (parser api)
```python
# Eventually `x` will hold.
phi1 = mtl.parse('F x')
# `x & y` will always hold.
phi2 = mtl.parse('G(x & y)')
# `x` holds until `y` holds.
# Note that since `U` is binary, it requires parens.
phi3 = mtl.parse('(x U y)')
# Weak until (`y` never has to hold).
phi4 = mtl.parse('(x W y)')
# Whenever `x` holds, then `y` holds in the next two time units.
phi5 = mtl.parse('G(x -> F[0, 2] y)')
# We also support timed until.
phi6 = mtl.parse('(a U[0, 2] b)')
# Finally, if time is discretized, we also support the next operator.
# Thus, LTL can also be modeled.
# `a` holds in two time steps.
phi7 = mtl.parse('XX a')
```
## Quantitative Evaluate (Signal Temporal Logic)
Given a property `phi`, one can evaluate is a timeseries satisifies
`phi`. Time Series can either be defined using a dictionary mapping
atomic predicate names to lists of (`time`, `val`) pairs **or** using
the [DiscreteSignals](https://github.com/mvcisback/DiscreteSignals)
API (used internally).
There are two types of evaluation. One uses the boolean semantics of
MTL and the other uses Signal Temporal Logic like semantics.
```python
# Assumes piece wise constant interpolation.
data = {
'a': [(0, 100), (1, -1), (3, -2)],
'b': [(0, 20), (0.2, 2), (4, -10)]
}
phi = mtl.parse('F(a | b)')
print(phi(data))
# output: 100
# Evaluate at t=3
print(phi(data, time=3))
# output: 2
# Evaluate with discrete time
phi = mtl.parse('X b')
print(phi(data, dt=0.2))
# output: 2
```
## Boolean Evaluation
To Boolean semantics can be thought of as a special case of the
quantitative semantics where `True ↦ 1` and `False ↦ -1`. This
conversion happens automatically using the `quantitative=False`
flag.
```python
# Assumes piece wise constant interpolation.
data = {
'a': [(0, True), (1, False), (3, False)],
'b': [(0, False), (0.2, True), (4, False)]
}
phi = mtl.parse('F(a | b)')
print(phi(data, quantitative=False))
# output: True
phi = mtl.parse('F(a | b)')
print(phi(data))
# output: True
# Note, quantitative parameter defaults to False
# Evaluate at t=3.
print(phi(data, time=3, quantitative=False))
# output: False
# Compute sliding satisifaction.
print(phi(data, time=None, quantitative=False))
# output: [(0, True), (0.2, True), (4, False)]
# Evaluate with discrete time
phi = mtl.parse('X b')
print(phi(data, dt=0.2, quantitative=False))
# output: True
```
## Utilities
```python
import mtl
from mtl import utils
print(utils.scope(mtl.parse('XX a'), dt=0.1))
# output: 0.2
print(utils.discretize(mtl.parse('F[0, 0.2] a'), dt=0.1))
# output: (a | X a | XX a)
```
# Similar Projects
Feel free to open up a pull-request to add other similar projects. This library was written to meet some of my unique needs, for example I wanted the AST to be immutable and wanted the library to **just** handle manipulating MTL. Many other similar projects exist with different goals.
1. https://github.com/doganulus/python-monitors
1. https://github.com/STLInspector/STLInspector
# Citing
@misc{pyMTL,
author = {Marcell Vazquez-Chanlatte},
title = {mvcisback/py-metric-temporal-logic: v0.1.1},
month = jan,
year = 2019,
doi = {10.5281/zenodo.2548862},
url = {https://doi.org/10.5281/zenodo.2548862}
}
[1]: https://link.springer.com/chapter/10.1007/BFb0031988