mtl-aas/README.md
2018-09-25 14:14:04 -07:00

172 lines
3.7 KiB
Markdown

<figure>
<img src="assets/logo.png" alt="py-metric-temporal logic logo" width=300px>
<figcaption>
A library for manipulating and evaluating metric temporal logic.
</figcaption>
</figure>
[![Build Status](https://travis-ci.org/mvcisback/py-metric-temporal-logic.svg?branch=master)](https://travis-ci.org/mvcisback/py-metric-temporal-logic)
[![codecov](https://codecov.io/gh/mvcisback/py-metric-temporal-logic/branch/master/graph/badge.svg)](https://codecov.io/gh/mvcisback/py-metric-temporal-logic)
# About
Python library for working with Metric Temporal Logic (MTL). Metric
Temporal Logic is an extension of Linear Temporal Logic (LTL) for
specifying properties over time series (See [Alur][1]). Some practical examples are
given in the usage.
# Installation
`$ pip install metric-temporal-logic`
# Usage
To begin, we import `mtl`.
```python
import mtl
```
## Propositional logic (using parse api)
```python
# - Lowercase strings denote atomic predicates.
phi0 = mtl.parse('atomicpred')
# - Binary operators need to be surrounded by parens.
phi1 = mtl.parse('((a & b & c) | d | e)')
phi2 = mtl.parse('(a -> b) & (~a -> c)')
phi3 = mtl.parse('(a -> b -> c)')
phi4 = mtl.parse('(a <-> b <-> c)')
phi5 = mtl.parse('(x ^ y ^ z)')
# - Unary operators (negation)
phi6 = mtl.parse('~a')
phi7 = mtl.parse('~(a)')
```
## Propositional logic (using python syntax)
```python
a, b = mtl.parse('a'), mtl.parse('b')
phi0 = ~a
phi1 = a & b
phi2 = a | b
# TODO: add
phi3 = a ^ b
phi4 = a.iff(b)
phi5 = a.implies(b)
```
## Modal Logic (parser api)
```python
# Eventually `x` will hold.
phi1 = mtl.parse('F x')
# `x & y` will always hold.
phi2 = mtl.parse('G(x & y)')
# `x` holds until `y` holds.
# Note that since `U` is binary, it requires parens.
phi3 = mtl.parse('(x U y)')
# Weak until (`y` never has to hold).
phi4 = mtl.parse('(x W y)')
# Whenever `x` holds, then `y` holds in the next two time units.
phi5 = mtl.parse('G(x -> F[0, 2] y)')
# We also support timed until.
phi6 = mtl.parse('(a U[0, 2] b)')
# Finally, if time is discretized, we also support the next operator.
# Thus, LTL can also be modeled.
# `a` holds in two time steps.
phi7 = mtl.parse('XX a')
```
## Modal Logic (using python syntax)
```python
a, b = mtl.parse('a'), mtl.parse('b')
# Eventually `a` will hold.
phi1 = a.eventually()
# `a & b` will always hold.
phi2 = (a & b).always()
# `a` until `b`
phi3 = a.until()
# `a` weak until `b`
phi4 = a.weak_until(b)
# Whenever `a` holds, then `b` holds in the next two time units.
phi5 = (a.implies(b.eventually(lo=0, hi=2))).always()
# We also support timed until.
phi6 = a.timed_until(b, lo=0, hi=2)
# `a` holds in two time steps.
phi7 = a >> 2
```
## Boolean Evaluation
```python
# Assumes piece wise constant interpolation.
data = {
'a': [(0, True), (1, False), (3, False)]
'b': [(0, False), (0.2, True), (4, False)]
}
phi = mtl.parse('F(a | b)')
print(phi(data, quantitative=False))
# output: True
# Evaluate at t=3
print(phi(data, t=3, quantitative=False))
# output: False
# Evaluate with discrete time
phi = mtl.parse('X b')
print(phi(data, dt=0.2, quantitative=False))
# output: True
```
## Quantitative Evaluate
```python
# Assumes piece wise constant interpolation.
data = {
'a': [(0, 100), (1, -1), (3, -2)]
'b': [(0, 20), (0.2, 2), (4, -10)]
}
phi = mtl.parse('F(a | b)')
print(phi(data))
# output: 100
# Evaluate at t=3
print(phi(data, t=3))
# output: 2
# Evaluate with discrete time
phi = mtl.parse('X b')
print(phi(data, dt=0.2))
# output: 2
```
## Utilities
```python
import mtl
from mtl import utils
print(utils.scope(mtl.parse('XX a'), dt=0.1))
# output: 0.2
print(utils.discretize(mtl.parse('F[0, 0.2] a'), dt=0.1))
# output: (a | X a | XX a)
```
[1]: https://link.springer.com/chapter/10.1007/BFb0031988