muMLE/framework/conformance.py

652 lines
33 KiB
Python

from services.bottom.V0 import Bottom
from services import od
from services.primitives.actioncode_type import ActionCode
from uuid import UUID
from state.base import State
from typing import Dict, Tuple, Set, Any, List
from pprint import pprint
import functools
# based on https://stackoverflow.com/a/39381428
# Parses and executes a block of Python code, and returns the eval result of the last statement
import ast
def exec_then_eval(code, _globals, _locals):
block = ast.parse(code, mode='exec')
# assumes last node is an expression
last = ast.Expression(block.body.pop().value)
exec(compile(block, '<string>', mode='exec'), _globals, _locals)
return eval(compile(last, '<string>', mode='eval'), _globals, _locals)
class Conformance:
def __init__(self, state: State, model: UUID, type_model: UUID):
self.state = state
self.bottom = Bottom(state)
type_model_id = state.read_dict(state.read_root(), "SCD")
self.scd_model = UUID(state.read_value(type_model_id))
self.model = model
self.type_model = type_model
self.type_mapping: Dict[str, str] = {}
self.model_names = {
# map model elements to their names to prevent iterating too much
self.bottom.read_outgoing_elements(self.model, e)[0]: e
for e in self.bottom.read_keys(self.model)
}
self.type_model_names = {
# map type model elements to their names to prevent iterating too much
self.bottom.read_outgoing_elements(self.type_model, e)[0]
: e for e in self.bottom.read_keys(self.type_model)
}
self.sub_types: Dict[str, Set[str]] = {
k: set() for k in self.bottom.read_keys(self.type_model)
}
self.primitive_values: Dict[UUID, Any] = {}
self.abstract_types: List[str] = []
self.multiplicities: Dict[str, Tuple] = {}
self.source_multiplicities: Dict[str, Tuple] = {}
self.target_multiplicities: Dict[str, Tuple] = {}
self.structures = {}
self.matches = {}
self.candidates = {}
def check_nominal(self, *, log=False):
"""
Perform a nominal conformance check
Args:
log: boolean indicating whether to log errors
Returns:
Boolean indicating whether the check has passed
"""
errors = []
errors += self.check_typing()
errors += self.check_link_typing()
errors += self.check_multiplicities()
errors += self.check_constraints()
return errors
# def check_structural(self, *, build_morphisms=True, log=False):
# """
# Perform a structural conformance check
# Args:
# build_morphisms: boolean indicating whether to create morpishm links
# log: boolean indicating whether to log errors
# Returns:
# Boolean indicating whether the check has passed
# """
# try:
# self.precompute_structures()
# self.match_structures()
# if build_morphisms:
# self.build_morphisms()
# self.check_nominal(log=log)
# return True
# except RuntimeError as e:
# if log:
# print(e)
# return False
def read_attribute(self, element: UUID, attr_name: str):
"""
Read an attribute value attached to an element
Args:
element: UUID of the element
attr_name: name of the attribute to read
Returns:
The value of hte attribute, if no attribute with given name is found, returns None
"""
if element in self.type_model_names:
# type model element
element_name = self.type_model_names[element]
model = self.type_model
else:
# model element
element_name = self.model_names[element]
model = self.model
try:
attr_elem, = self.bottom.read_outgoing_elements(model, f"{element_name}.{attr_name}")
return self.primitive_values.get(attr_elem, self.bottom.read_value(UUID(self.bottom.read_value(attr_elem))))
except ValueError:
return None
def precompute_sub_types(self):
"""
Creates an internal representation of sub-type hierarchies that is
more easily queryable that the state graph
"""
# collect inheritance link instances
inh_element, = self.bottom.read_outgoing_elements(self.scd_model, "Inheritance")
inh_links = []
for tm_element, tm_name in self.type_model_names.items():
morphisms = self.bottom.read_outgoing_elements(tm_element, "Morphism")
if inh_element in morphisms:
# we have an instance of an inheritance link
inh_links.append(tm_element)
# for each inheritance link we add the parent and child to the sub types map
for link in inh_links:
tm_source = self.bottom.read_edge_source(link)
tm_target = self.bottom.read_edge_target(link)
parent_name = self.type_model_names[tm_target]
child_name = self.type_model_names[tm_source]
self.sub_types[parent_name].add(child_name)
# iteratively expand the sub type hierarchies in the sub types map
stop = False
while not stop:
stop = True
for child_name, child_children in self.sub_types.items():
for parent_name, parent_children in self.sub_types.items():
if child_name in parent_children:
original_size = len(parent_children)
parent_children.update(child_children)
if len(parent_children) != original_size:
stop = False
def deref_primitive_values(self):
"""
Prefetch the values stored in referenced primitive type models
"""
ref_element, = self.bottom.read_outgoing_elements(self.scd_model, "ModelRef")
string_element, = self.bottom.read_outgoing_elements(self.scd_model, "String")
boolean_element, = self.bottom.read_outgoing_elements(self.scd_model, "Boolean")
integer_element, = self.bottom.read_outgoing_elements(self.scd_model, "Integer")
t_deref = []
t_refs = []
for tm_element, tm_name in self.type_model_names.items():
morphisms = self.bottom.read_outgoing_elements(tm_element, "Morphism")
if ref_element in morphisms:
t_refs.append(self.type_model_names[tm_element])
elif string_element in morphisms:
t_deref.append(tm_element)
elif boolean_element in morphisms:
t_deref.append(tm_element)
elif integer_element in morphisms:
t_deref.append(tm_element)
for elem in t_deref:
primitive_model = UUID(self.bottom.read_value(elem))
primitive_value_node, = self.bottom.read_outgoing_elements(primitive_model)
primitive_value = self.bottom.read_value(primitive_value_node)
self.primitive_values[elem] = primitive_value
for m_name, tm_name in self.type_mapping.items():
if tm_name in t_refs:
# dereference
m_element, = self.bottom.read_outgoing_elements(self.model, m_name)
primitive_model = UUID(self.bottom.read_value(m_element))
try:
primitive_value_node, = self.bottom.read_outgoing_elements(primitive_model)
primitive_value = self.bottom.read_value(primitive_value_node)
self.primitive_values[m_element] = primitive_value
except ValueError:
pass # multiple elements in model indicate that we're not dealing with a primitive
def precompute_multiplicities(self):
"""
Creates an internal representation of type multiplicities that is
more easily queryable that the state graph
"""
for tm_element, tm_name in self.type_model_names.items():
# class abstract flags and multiplicities
abstract = self.read_attribute(tm_element, "abstract")
lc = self.read_attribute(tm_element, "lower_cardinality")
uc = self.read_attribute(tm_element, "upper_cardinality")
if abstract:
self.abstract_types.append(tm_name)
if lc or uc:
mult = (
lc if lc != None else float("-inf"),
uc if uc != None else float("inf")
)
self.multiplicities[tm_name] = mult
# multiplicities for associations
slc = self.read_attribute(tm_element, "source_lower_cardinality")
suc = self.read_attribute(tm_element, "source_upper_cardinality")
if slc or suc:
mult = (
slc if slc != None else float("-inf"),
suc if suc != None else float("inf")
)
self.source_multiplicities[tm_name] = mult
tlc = self.read_attribute(tm_element, "target_lower_cardinality")
tuc = self.read_attribute(tm_element, "target_upper_cardinality")
if tlc or tuc:
mult = (
tlc if tlc != None else float("-inf"),
tuc if tuc != None else float("inf")
)
self.target_multiplicities[tm_name] = mult
# optional for attribute links
opt = self.read_attribute(tm_element, "optional")
if opt != None:
self.source_multiplicities[tm_name] = (0, float('inf'))
self.target_multiplicities[tm_name] = (0 if opt else 1, 1)
def get_type(self, element: UUID):
"""
Retrieve the type of an element (wrt. current type model)
"""
morphisms = self.bottom.read_outgoing_elements(element, "Morphism")
tm_element, = [m for m in morphisms if m in self.type_model_names.keys()]
return tm_element
def check_typing(self):
"""
for each element of model check whether a morphism
link exists to some element of type_model
"""
errors = []
ref_element, = self.bottom.read_outgoing_elements(self.scd_model, "ModelRef")
model_names = self.bottom.read_keys(self.model)
for m_name in model_names:
m_element, = self.bottom.read_outgoing_elements(self.model, m_name)
try:
tm_element = self.get_type(m_element)
tm_name = self.type_model_names[tm_element]
self.type_mapping[m_name] = tm_name
if ref_element in self.bottom.read_outgoing_elements(tm_element, "Morphism"):
sub_m = UUID(self.bottom.read_value(m_element))
sub_tm = UUID(self.bottom.read_value(tm_element))
nested_errors = Conformance(self.state, sub_m, sub_tm).check_nominal()
errors += [f"In ModelRef ({m_name}):" + err for err in nested_errors]
except ValueError as e:
import traceback
traceback.format_exc(e)
# no or too many morphism links found
errors.append(f"Incorrectly typed element: {m_name}")
return errors
def check_link_typing(self):
"""
for each link, check whether its source and target are of a valid type
"""
errors = []
self.precompute_sub_types()
for m_name, tm_name in self.type_mapping.items():
m_element, = self.bottom.read_outgoing_elements(self.model, m_name)
m_source = self.bottom.read_edge_source(m_element)
m_target = self.bottom.read_edge_target(m_element)
if m_source == None or m_target == None:
# element is not a link
continue
tm_element, = self.bottom.read_outgoing_elements(self.type_model, tm_name)
tm_source = self.bottom.read_edge_source(tm_element)
tm_target = self.bottom.read_edge_target(tm_element)
# check if source is typed correctly
source_name = self.model_names[m_source]
source_type_actual = self.type_mapping[source_name]
source_type_expected = self.type_model_names[tm_source]
if source_type_actual != source_type_expected:
if source_type_actual not in self.sub_types[source_type_expected]:
errors.append(f"Invalid source type {source_type_actual} for element {m_name}")
# check if target is typed correctly
target_name = self.model_names[m_target]
target_type_actual = self.type_mapping[target_name]
target_type_expected = self.type_model_names[tm_target]
if target_type_actual != target_type_expected:
if target_type_actual not in self.sub_types[target_type_expected]:
errors.append(f"Invalid target type {target_type_actual} for element {m_name}")
return errors
def check_multiplicities(self):
"""
Check whether multiplicities for all types are respected
"""
self.deref_primitive_values()
self.precompute_multiplicities()
errors = []
for tm_name in self.type_model_names.values():
# abstract classes
if tm_name in self.abstract_types:
type_count = list(self.type_mapping.values()).count(tm_name)
if type_count > 0:
errors.append(f"Invalid instantiation of abstract class: {tm_name}")
# class multiplicities
if tm_name in self.multiplicities:
lc, uc = self.multiplicities[tm_name]
type_count = list(self.type_mapping.values()).count(tm_name)
for sub_type in self.sub_types[tm_name]:
type_count += list(self.type_mapping.values()).count(sub_type)
if type_count < lc or type_count > uc:
errors.append(f"Cardinality of type exceeds valid multiplicity range: {tm_name} ({type_count})")
# association source multiplicities
if tm_name in self.source_multiplicities:
tm_element, = self.bottom.read_outgoing_elements(self.type_model, tm_name)
tm_tgt_element = self.bottom.read_edge_target(tm_element)
tm_tgt_name = self.type_model_names[tm_tgt_element]
lc, uc = self.source_multiplicities[tm_name]
for tgt_obj_name, t in self.type_mapping.items():
if t == tm_tgt_name or t in self.sub_types[tm_tgt_name]:
count = 0
tgt_obj_node, = self.bottom.read_outgoing_elements(self.model, tgt_obj_name)
incoming = self.bottom.read_incoming_edges(tgt_obj_node)
for i in incoming:
try:
if self.type_mapping[self.model_names[i]] == tm_name:
count += 1
except KeyError:
pass # for elements not part of model, e.g. morphism links
if count < lc or count > uc:
errors.append(f"Source cardinality of type {tm_name} ({count}) out of bounds ({lc}..{uc}) in {tgt_obj_name}.")
# association target multiplicities
if tm_name in self.target_multiplicities:
tm_element, = self.bottom.read_outgoing_elements(self.type_model, tm_name)
# tm_target_element = self.bottom.read_edge_target(tm_element)
tm_src_element = self.bottom.read_edge_source(tm_element)
tm_src_name = self.type_model_names[tm_src_element]
lc, uc = self.target_multiplicities[tm_name]
# print("checking assoc", tm_name, "source", tm_src_name)
# print("subtypes of", tm_src_name, self.sub_types[tm_src_name])
for src_obj_name, t in self.type_mapping.items():
if t == tm_src_name or t in self.sub_types[tm_src_name]:
# print("got obj", src_obj_name, "of type", t)
count = 0
src_obj_node, = self.bottom.read_outgoing_elements(self.model, src_obj_name)
# outgoing = self.bottom.read_incoming_edges(src_obj_node)
outgoing = self.bottom.read_outgoing_edges(src_obj_node)
for o in outgoing:
try:
if self.type_mapping[self.model_names[o]] == tm_name:
# print("have an outgoing edge", self.model_names[o], self.type_mapping[self.model_names[o]], "---> increase counter")
count += 1
except KeyError:
pass # for elements not part of model, e.g. morphism links
if count < lc or count > uc:
errors.append(f"Target cardinality of type {tm_name} ({count}) out of bounds ({lc}..{uc}) in {src_obj_name}.")
# else:
# print(f"OK: Target cardinality of type {tm_name} ({count}) within bounds ({lc}..{uc}) in {src_obj_name}.")
return errors
def evaluate_constraint(self, code, **kwargs):
"""
Evaluate constraint code (Python code)
"""
funcs = {
'read_value': self.state.read_value,
'get_value': lambda el: od.read_primitive_value(self.bottom, el, self.type_model)[0],
'get_target': lambda el: self.bottom.read_edge_target(el),
'get_slot': od.OD(self.type_model, self.model, self.state).get_slot,
'get_all_instances': self.get_all_instances
}
# print("evaluating constraint ...", code)
loc = {**kwargs, **funcs}
result = exec_then_eval(
code,
{'__builtins__': {'isinstance': isinstance, 'print': print,
'int': int, 'float': float, 'bool': bool, 'str': str, 'tuple': tuple, 'len': len}
}, # globals
loc # locals
)
# print('result =', result)
return result
def get_all_instances(self, type_name: str, include_subtypes=True):
result = [e_name for e_name, t_name in self.type_mapping.items() if t_name == type_name]
if include_subtypes:
for subtype_name in self.sub_types[type_name]:
# print(subtype_name, 'is subtype of ')
result += [e_name for e_name, t_name in self.type_mapping.items() if t_name == subtype_name]
result_with_ids = [ (e_name, self.bottom.read_outgoing_elements(self.model, e_name)[0]) for e_name in result]
return result_with_ids
def check_constraints(self):
"""
Check whether all constraints defined for a model are respected
"""
errors = []
def get_code(tm_name):
constraints = self.bottom.read_outgoing_elements(self.type_model, f"{tm_name}.constraint")
if len(constraints) == 1:
constraint = constraints[0]
code = ActionCode(UUID(self.bottom.read_value(constraint)), self.bottom.state).read()
return code
def check_result(result, description):
if not isinstance(result, bool):
raise Exception(f"{description} evaluation result is not boolean! Instead got {result}")
if not result:
errors.append(f"{description} not satisfied.")
# local constraints
for m_name, tm_name in self.type_mapping.items():
code = get_code(tm_name)
if code != None:
tm_element, = self.bottom.read_outgoing_elements(self.type_model, tm_name)
morphisms = self.bottom.read_incoming_elements(tm_element, "Morphism")
morphisms = [m for m in morphisms if m in self.model_names]
for m_element in morphisms:
result = self.evaluate_constraint(code, element=m_element, type_name=tm_name)
description = f"Local constraint of \"{tm_name}\" in \"{m_name}\""
check_result(result, description)
# global constraints
glob_constraints = []
# find global constraints...
glob_constraint_type, = self.bottom.read_outgoing_elements(self.scd_model, "GlobalConstraint")
for tm_name in self.bottom.read_keys(self.type_model):
tm_node, = self.bottom.read_outgoing_elements(self.type_model, tm_name)
# print(key, node)
for type_of_node in self.bottom.read_outgoing_elements(tm_node, "Morphism"):
if type_of_node == glob_constraint_type:
# node is GlobalConstraint
glob_constraints.append(tm_name)
# evaluate them
for tm_name in glob_constraints:
code = get_code(tm_name)
if code != None:
result = self.evaluate_constraint(code, model=self.model)
description = f"Global constraint \"{tm_name}\""
check_result(result, description)
return errors
def precompute_structures(self):
"""
Make an internal representation of type structures such that comparing type structures is easier
"""
self.precompute_sub_types()
scd_elements = self.bottom.read_outgoing_elements(self.scd_model)
# collect types
class_element, = self.bottom.read_outgoing_elements(self.scd_model, "Class")
association_element, = self.bottom.read_outgoing_elements(self.scd_model, "Association")
for tm_element, tm_name in self.type_model_names.items():
# retrieve elements that tm_element is a morphism of
morphisms = self.bottom.read_outgoing_elements(tm_element, "Morphism")
morphism, = [m for m in morphisms if m in scd_elements]
# check if tm_element is a morphism of AttributeLink
if class_element == morphism or association_element == morphism:
self.structures[tm_name] = set()
# collect type structures
# retrieve AttributeLink to check whether element is a morphism of AttributeLink
attr_link_element, = self.bottom.read_outgoing_elements(self.scd_model, "AttributeLink")
for tm_element, tm_name in self.type_model_names.items():
# retrieve elements that tm_element is a morphism of
morphisms = self.bottom.read_outgoing_elements(tm_element, "Morphism")
morphism, = [m for m in morphisms if m in scd_elements]
# check if tm_element is a morphism of AttributeLink
if attr_link_element == morphism:
# retrieve attributes of attribute link, i.e. 'name' and 'optional'
attrs = self.bottom.read_outgoing_elements(tm_element)
name_model_node, = filter(lambda x: self.type_model_names.get(x, "").endswith(".name"), attrs)
opt_model_node, = filter(lambda x: self.type_model_names.get(x, "").endswith(".optional"), attrs)
# get attr name value
name_model = UUID(self.bottom.read_value(name_model_node))
name_node, = self.bottom.read_outgoing_elements(name_model)
name = self.bottom.read_value(name_node)
# get attr opt value
opt_model = UUID(self.bottom.read_value(opt_model_node))
opt_node, = self.bottom.read_outgoing_elements(opt_model)
opt = self.bottom.read_value(opt_node)
# get attr type name
source_type_node = self.bottom.read_edge_source(tm_element)
source_type_name = self.type_model_names[source_type_node]
target_type_node = self.bottom.read_edge_target(tm_element)
target_type_name = self.type_model_names[target_type_node]
# add attribute to the structure of its source type
# attribute is stored as a (name, optional, type) triple
self.structures.setdefault(source_type_name, set()).add((name, opt, target_type_name))
# extend structures of sub types with attrs of super types
for super_type, sub_types in self.sub_types.items():
for sub_type in sub_types:
self.structures.setdefault(sub_type, set()).update(self.structures[super_type])
# filter out abstract types, as they cannot be instantiated
# retrieve Class_abstract to check whether element is a morphism of Class_abstract
class_abs_element, = self.bottom.read_outgoing_elements(self.scd_model, "Class_abstract")
for tm_element, tm_name in self.type_model_names.items():
# retrieve elements that tm_element is a morphism of
morphisms = self.bottom.read_outgoing_elements(tm_element, "Morphism")
morphism, = [m for m in morphisms if m in scd_elements]
# check if tm_element is a morphism of Class_abstract
if class_abs_element == morphism:
# retrieve 'abstract' attribute value
target_node = self.bottom.read_edge_target(tm_element)
abst_model = UUID(self.bottom.read_value(target_node))
abst_node, = self.bottom.read_outgoing_elements(abst_model)
is_abstract = self.bottom.read_value(abst_node)
# retrieve type name
source_node = self.bottom.read_edge_source(tm_element)
type_name = self.type_model_names[source_node]
if is_abstract:
self.structures.pop(type_name)
def match_structures(self):
"""
Try to match the structure of each element in the instance model to some element in the type model
"""
ref_element, = self.bottom.read_outgoing_elements(self.scd_model, "ModelRef")
# matching
for m_element, m_name in self.model_names.items():
is_edge = self.bottom.read_edge_source(m_element) != None
print('element:', m_element, 'name:', m_name, 'is_edge', is_edge)
for type_name, structure in self.structures.items():
tm_element, = self.bottom.read_outgoing_elements(self.type_model, type_name)
type_is_edge = self.bottom.read_edge_source(tm_element) != None
if is_edge == type_is_edge:
print(' type_name:', type_name, 'type_is_edge:', type_is_edge, "structure:", structure)
mismatch = False
matched = 0
for name, optional, attr_type in structure:
print(' name:', name, "optional:", optional, "attr_type:", attr_type)
try:
attr, = self.bottom.read_outgoing_elements(self.model, f"{m_name}.{name}")
attr_tm, = self.bottom.read_outgoing_elements(self.type_model, attr_type)
# if attribute is a modelref, we need to check whether it
# linguistically conforms to the specified type
# if its an internally defined attribute, this will be checked by constraints
morphisms = self.bottom.read_outgoing_elements(attr_tm, "Morphism")
attr_conforms = True
if ref_element in morphisms:
# check conformance of reference model
type_model_uuid = UUID(self.bottom.read_value(attr_tm))
model_uuid = UUID(self.bottom.read_value(attr))
attr_conforms = Conformance(self.state, model_uuid, type_model_uuid)\
.check_nominal()
else:
# eval constraints
code = self.read_attribute(attr_tm, "constraint")
if code != None:
attr_conforms = self.evaluate_constraint(code, element=attr)
if attr_conforms:
matched += 1
print(" attr_conforms -> matched:", matched)
except ValueError as e:
# attr not found or failed parsing UUID
if optional:
print(" skipping:", e)
continue
else:
# did not match mandatory attribute
print(" breaking:", e)
mismatch = True
break
print(' matched:', matched, 'len(structure):', len(structure))
# if matched == len(structure):
if not mismatch:
print(' add to candidates:', m_name, type_name)
self.candidates.setdefault(m_name, set()).add(type_name)
# filter out candidates for links based on source and target types
for m_element, m_name in self.model_names.items():
is_edge = self.bottom.read_edge_source(m_element) != None
if is_edge and m_name in self.candidates:
m_source = self.bottom.read_edge_source(m_element)
m_target = self.bottom.read_edge_target(m_element)
print(self.candidates)
source_candidates = self.candidates[self.model_names[m_source]]
target_candidates = self.candidates[self.model_names[m_target]]
remove = set()
for candidate_name in self.candidates[m_name]:
candidate_element, = self.bottom.read_outgoing_elements(self.type_model, candidate_name)
candidate_source = self.type_model_names[self.bottom.read_edge_source(candidate_element)]
if candidate_source not in source_candidates:
if len(source_candidates.intersection(set(self.sub_types[candidate_source]))) == 0:
remove.add(candidate_name)
candidate_target = self.type_model_names[self.bottom.read_edge_target(candidate_element)]
if candidate_target not in target_candidates:
if len(target_candidates.intersection(set(self.sub_types[candidate_target]))) == 0:
remove.add(candidate_name)
self.candidates[m_name] = self.candidates[m_name].difference(remove)
def build_morphisms(self):
"""
Build the morphisms between an instance and a type model that structurally match
"""
if not all([len(c) == 1 for c in self.candidates.values()]):
raise RuntimeError("Cannot build incomplete or ambiguous morphism.")
mapping = {k: v.pop() for k, v in self.candidates.items()}
for m_name, tm_name in mapping.items():
# morphism to class/assoc
m_element, = self.bottom.read_outgoing_elements(self.model, m_name)
tm_element, = self.bottom.read_outgoing_elements(self.type_model, tm_name)
self.bottom.create_edge(m_element, tm_element, "Morphism")
# morphism for attributes and attribute links
structure = self.structures[tm_name]
for attr_name, _, attr_type in structure:
try:
# attribute node
attr_element, = self.bottom.read_outgoing_elements(self.model, f"{m_name}.{attr_name}")
attr_type_element, = self.bottom.read_outgoing_elements(self.type_model, attr_type)
self.bottom.create_edge(attr_element, attr_type_element, "Morphism")
# attribute link
attr_link_element, = self.bottom.read_outgoing_elements(self.model, f"{m_name}_{attr_name}")
attr_link_type_element, = self.bottom.read_outgoing_elements(self.type_model, f"{tm_name}_{attr_name}")
self.bottom.create_edge(attr_link_element, attr_link_type_element, "Morphism")
except ValueError:
pass
if __name__ == '__main__':
from state.devstate import DevState as State
s = State()
from bootstrap.scd import bootstrap_scd
scd = bootstrap_scd(s)
from bootstrap.pn import bootstrap_pn
ltm_pn = bootstrap_pn(s, "PN")
ltm_pn_lola = bootstrap_pn(s, "PNlola")
from services.pn import PN
my_pn = s.create_node()
PNserv = PN(my_pn, s)
PNserv.create_place("p1", 5)
PNserv.create_place("p2", 0)
PNserv.create_transition("t1")
PNserv.create_p2t("p1", "t1", 1)
PNserv.create_t2p("t1", "p2", 1)
cf = Conformance(s, my_pn, ltm_pn_lola)
# cf = Conformance(s, scd, ltm_pn, scd)
cf.precompute_structures()
cf.match_structures()
cf.build_morphisms()
print(cf.check_nominal())