394 lines
16 KiB
Python
394 lines
16 KiB
Python
from api.cd import CDAPI
|
|
from api.od import ODAPI, bind_api_readonly
|
|
from util.eval import exec_then_eval
|
|
from state.base import State
|
|
from uuid import UUID
|
|
from services.bottom.V0 import Bottom
|
|
from services.scd import SCD
|
|
from services import od as services_od
|
|
from transformation.vf2 import Graph, Edge, Vertex, MatcherVF2
|
|
from transformation import ramify
|
|
import itertools
|
|
import re
|
|
import functools
|
|
|
|
from util.timer import Timer, counted
|
|
|
|
class _is_edge:
|
|
def __repr__(self):
|
|
return "EDGE"
|
|
def to_json(self):
|
|
return "EDGE"
|
|
# just a unique symbol that is only equal to itself
|
|
IS_EDGE = _is_edge()
|
|
|
|
class _is_modelref:
|
|
def __repr__(self):
|
|
return "REF"
|
|
def to_json(self):
|
|
return "REF"
|
|
IS_MODELREF = _is_modelref()
|
|
|
|
# class IS_TYPE:
|
|
# def __init__(self, type):
|
|
# # mvs-node of the type
|
|
# self.type = type
|
|
# def __repr__(self):
|
|
# return f"TYPE({str(self.type)[-4:]})"
|
|
|
|
class NamedNode(Vertex):
|
|
def __init__(self, value, name):
|
|
super().__init__(value)
|
|
# the name of the node in the context of the model
|
|
# the matcher by default ignores this value
|
|
self.name = name
|
|
|
|
# MVS-nodes become vertices
|
|
class MVSNode(NamedNode):
|
|
def __init__(self, value, node_id, name):
|
|
super().__init__(value, name)
|
|
# useful for debugging
|
|
self.node_id = node_id
|
|
def __repr__(self):
|
|
if self.value == None:
|
|
return f"N({self.name})"
|
|
if isinstance(self.value, str):
|
|
return f"N({self.name}=\"{self.value}\")"
|
|
return f"N({self.name}={self.value})"
|
|
# if isinstance(self.value, str):
|
|
# return f"N({self.name}=\"{self.value}\",{str(self.node_id)[-4:]})"
|
|
# return f"N({self.name}={self.value},{str(self.node_id)[-4:]})"
|
|
|
|
# MVS-edges become vertices.
|
|
class MVSEdge(NamedNode):
|
|
def __init__(self, node_id, name):
|
|
super().__init__(IS_EDGE, name)
|
|
# useful for debugging
|
|
self.node_id = node_id
|
|
def __repr__(self):
|
|
return f"E({self.name})"
|
|
# return f"E({self.name}{str(self.node_id)[-4:]})"
|
|
|
|
# dirty way of detecting whether a node is a ModelRef
|
|
UUID_REGEX = re.compile(r"[0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z]-[0-9a-z][0-9a-z][0-9a-z][0-9a-z]-[0-9a-z][0-9a-z][0-9a-z][0-9a-z]-[0-9a-z][0-9a-z][0-9a-z][0-9a-z]-[0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z]")
|
|
|
|
# Converts an object diagram in MVS state to the pattern matcher graph type
|
|
# ModelRefs are flattened
|
|
def model_to_graph(state: State, model: UUID, metamodel: UUID,
|
|
_filter=lambda node: True, prefix=""):
|
|
# with Timer("model_to_graph"):
|
|
od = services_od.OD(model, metamodel, state)
|
|
scd = SCD(model, state)
|
|
scd_mm = SCD(metamodel, state)
|
|
|
|
bottom = Bottom(state)
|
|
|
|
graph = Graph()
|
|
|
|
mvs_edges = []
|
|
modelrefs = {}
|
|
names = {}
|
|
|
|
def to_vtx(el, name):
|
|
# print("name:", name)
|
|
if bottom.is_edge(el):
|
|
mvs_edges.append(el)
|
|
edge = MVSEdge(el, name)
|
|
names[name] = edge
|
|
return edge
|
|
# If the value of the el is a ModelRef (only way to detect this is to match a regex - not very clean), then extract it. We'll create a link to the referred model later.
|
|
value = bottom.read_value(el)
|
|
if isinstance(value, str):
|
|
if UUID_REGEX.match(value) != None:
|
|
# side-effect
|
|
modelrefs[el] = (UUID(value), name)
|
|
return MVSNode(IS_MODELREF, el, name)
|
|
node = MVSNode(value, el, name)
|
|
names[name] = node
|
|
return node
|
|
|
|
# Objects and Links become vertices
|
|
uuid_to_vtx = { node: to_vtx(node, prefix+key) for key in bottom.read_keys(model) for node in bottom.read_outgoing_elements(model, key) if _filter(node) }
|
|
graph.vtxs = [ vtx for vtx in uuid_to_vtx.values() ]
|
|
|
|
# For every Link, two edges are created (for src and tgt)
|
|
for mvs_edge in mvs_edges:
|
|
mvs_src = bottom.read_edge_source(mvs_edge)
|
|
if mvs_src in uuid_to_vtx:
|
|
graph.edges.append(Edge(
|
|
src=uuid_to_vtx[mvs_src],
|
|
tgt=uuid_to_vtx[mvs_edge],
|
|
label="outgoing"))
|
|
mvs_tgt = bottom.read_edge_target(mvs_edge)
|
|
if mvs_tgt in uuid_to_vtx:
|
|
graph.edges.append(Edge(
|
|
src=uuid_to_vtx[mvs_edge],
|
|
tgt=uuid_to_vtx[mvs_tgt],
|
|
label="tgt"))
|
|
|
|
for node, (ref_m, name) in modelrefs.items():
|
|
vtx = uuid_to_vtx[node]
|
|
# Get MM of ref'ed model
|
|
ref_mm, = bottom.read_outgoing_elements(node, "Morphism")
|
|
vtx.modelref = (ref_m, ref_mm)
|
|
|
|
def add_types(node):
|
|
vtx = uuid_to_vtx[node]
|
|
type_node, = bottom.read_outgoing_elements(node, "Morphism")
|
|
# Put the type straight into the Vertex-object
|
|
# The benefit is that our Vertex-matching callback can then be coded cleverly, look at the types first, resulting in better performance
|
|
vtx.typ = type_node
|
|
|
|
# Add typing information for:
|
|
# - classes
|
|
# - attributes
|
|
# - associations
|
|
for class_name, class_node in scd_mm.get_classes().items():
|
|
objects = scd.get_typed_by(class_node)
|
|
for obj_name, obj_node in objects.items():
|
|
if _filter(obj_node):
|
|
add_types(obj_node)
|
|
for attr_name, attr_node in scd_mm.get_attributes(class_name).items():
|
|
attrs = scd.get_typed_by(attr_node)
|
|
for slot_name, slot_node in attrs.items():
|
|
if _filter(slot_node):
|
|
add_types(slot_node)
|
|
for assoc_name, assoc_node in scd_mm.get_associations().items():
|
|
objects = scd.get_typed_by(assoc_node)
|
|
for link_name, link_node in objects.items():
|
|
if _filter(link_node):
|
|
add_types(link_node)
|
|
|
|
return names, graph
|
|
|
|
class _No_Matched(Exception):
|
|
pass
|
|
def _cannot_call_matched(_):
|
|
raise _No_Matched()
|
|
|
|
# This function returns a Generator of matches.
|
|
# The idea is that the user can iterate over the match set, lazily generating it: if only interested in the first match, the entire match set doesn't have to be generated.
|
|
def match_od(state,
|
|
host_m, # the host graph, in which to search for matches
|
|
host_mm, # meta-model of the host graph
|
|
pattern_m, # the pattern to look for
|
|
pattern_mm, # the meta-model of the pattern (typically the RAMified version of host_mm)
|
|
pivot={}, # optional: a partial match (restricts possible matches, and speeds up the match process)
|
|
eval_context={}, # optional: additional variables, functions, ... to be available while evaluating condition-code in the pattern. Will be available as global variables in the condition-code.
|
|
):
|
|
bottom = Bottom(state)
|
|
|
|
# compute subtype relations and such:
|
|
cdapi = CDAPI(state, host_mm)
|
|
odapi = ODAPI(state, host_m, host_mm)
|
|
pattern_odapi = ODAPI(state, pattern_m, pattern_mm)
|
|
pattern_mm_odapi = ODAPI(state, pattern_mm, cdapi.mm)
|
|
|
|
# 'globals'-dict used when eval'ing conditions
|
|
bound_api = bind_api_readonly(odapi)
|
|
builtin = {
|
|
**bound_api,
|
|
'matched': _cannot_call_matched,
|
|
'odapi': odapi,
|
|
}
|
|
for key in eval_context:
|
|
if key in builtin:
|
|
print(f"WARNING: custom global '{key}' overrides pre-defined API function. Consider renaming it.")
|
|
eval_globals = {
|
|
**builtin,
|
|
**eval_context,
|
|
}
|
|
|
|
# Function object for pattern matching. Decides whether to match host and guest vertices, where guest is a RAMified instance (e.g., the attributes are all strings with Python expressions), and the host is an instance (=object diagram) of the original model (=class diagram)
|
|
class RAMCompare:
|
|
def __init__(self, bottom, host_od):
|
|
self.bottom = bottom
|
|
self.host_od = host_od
|
|
|
|
type_model_id = bottom.state.read_dict(bottom.state.read_root(), "SCD")
|
|
self.scd_model = UUID(bottom.state.read_value(type_model_id))
|
|
|
|
# constraints need to be checked at the very end, after a complete match is established, because constraint code may refer to matched elements by their name
|
|
self.conditions_to_check = {}
|
|
|
|
def match_types(self, g_vtx_type, h_vtx_type):
|
|
# types only match with their supertypes
|
|
# we assume that 'RAMifies'-traceability links have been created between guest and host types
|
|
try:
|
|
g_vtx_unramified_type = ramify.get_original_type(self.bottom, g_vtx_type)
|
|
except:
|
|
return False
|
|
|
|
try:
|
|
host_type_name = cdapi.type_model_names[h_vtx_type]
|
|
guest_type_name_unramified = cdapi.type_model_names[g_vtx_unramified_type]
|
|
except KeyError:
|
|
return False
|
|
|
|
types_ok = cdapi.is_subtype(
|
|
super_type_name=guest_type_name_unramified,
|
|
sub_type_name=host_type_name)
|
|
|
|
return types_ok
|
|
|
|
# Memoizing the result of comparison gives a huge performance boost!
|
|
# Especially `is_subtype_of` is very slow, and will be performed many times over on the same pair of nodes during the matching process.
|
|
# Assuming the model is not altered *during* matching, this is safe.
|
|
@functools.cache
|
|
def __call__(self, g_vtx, h_vtx):
|
|
# First check if the types match (if we have type-information)
|
|
if hasattr(g_vtx, 'typ'):
|
|
if not hasattr(h_vtx, 'typ'):
|
|
# if guest has a type, host must have a type
|
|
return False
|
|
if not self.match_types(g_vtx.typ, h_vtx.typ):
|
|
return False
|
|
|
|
if hasattr(g_vtx, 'modelref'):
|
|
if not hasattr(h_vtx, 'modelref'):
|
|
return False
|
|
|
|
python_code = services_od.read_primitive_value(self.bottom, g_vtx.node_id, pattern_mm)[0]
|
|
|
|
try:
|
|
# Try to execute code, but the likelyhood of failing is high:
|
|
# - the `matched` API function is not yet available
|
|
# - incompatible slots may be matched (it is only when their AttributeLinks are matched, that we know the types will be compatible)
|
|
with Timer(f'EVAL condition {g_vtx.name}'):
|
|
ok = exec_then_eval(python_code,
|
|
_globals=eval_globals,
|
|
_locals={'this': h_vtx.node_id})
|
|
self.conditions_to_check.pop(g_vtx.name, None)
|
|
return ok
|
|
except:
|
|
self.conditions_to_check[g_vtx.name] = python_code
|
|
return True # to be determined later, if it's actually a match
|
|
|
|
if g_vtx.value == None:
|
|
return h_vtx.value == None
|
|
|
|
# mvs-edges (which are converted to vertices) only match with mvs-edges
|
|
if g_vtx.value == IS_EDGE:
|
|
return h_vtx.value == IS_EDGE
|
|
|
|
if h_vtx.value == IS_EDGE:
|
|
return False
|
|
|
|
if g_vtx.value == IS_MODELREF:
|
|
return h_vtx.value == IS_MODELREF
|
|
|
|
if h_vtx.value == IS_MODELREF:
|
|
return False
|
|
|
|
return True
|
|
|
|
# Convert to format understood by matching algorithm
|
|
h_names, host = model_to_graph(state, host_m, host_mm)
|
|
|
|
# Only match matchable pattern elements
|
|
# E.g., the 'condition'-attribute that is added to every class, cannot be matched with anything
|
|
def is_matchable(pattern_el):
|
|
pattern_el_name = pattern_odapi.get_name(pattern_el)
|
|
if pattern_odapi.get_type_name(pattern_el) == "GlobalCondition":
|
|
return False
|
|
# Super-cheap and unreliable way of filtering out the 'condition'-attribute, added to every class:
|
|
return ((not pattern_el_name.endswith("condition")
|
|
# as an extra safety measure, if the user defined her own 'condition' attribute, RAMification turned this into 'RAM_condition', and we can detect this
|
|
# of course this breaks if the class name already ended with 'RAM', but let's hope that never happens
|
|
# also, we are assuming the default "RAM_" prefix is used, but the user can change this...
|
|
or pattern_el_name.endswith("RAM_condition"))
|
|
and (
|
|
not pattern_el_name.endswith("name")
|
|
or pattern_el_name.endswith("RAM_name") # same thing here as with the condition, explained above.
|
|
))
|
|
|
|
g_names, guest = model_to_graph(state, pattern_m, pattern_mm,
|
|
_filter=is_matchable)
|
|
|
|
# precompute the candidates for every guest vertex:
|
|
guest_to_host_candidate_vtxs = {}
|
|
vtxs_of_host_type = {}
|
|
|
|
for g_vtx in guest.vtxs:
|
|
object_node = g_vtx.node_id
|
|
if hasattr(g_vtx, 'typ'):
|
|
orig_class_node = ramify.get_original_type(bottom, g_vtx.typ)
|
|
orig_class_name = odapi.get_name(orig_class_node)
|
|
if orig_class_name in vtxs_of_host_type:
|
|
cands = vtxs_of_host_type[orig_class_name]
|
|
else:
|
|
cands = vtxs_of_host_type[orig_class_name] = len(odapi.get_all_instances(orig_class_name, include_subtypes=True))
|
|
else:
|
|
cands = len(host.vtxs)
|
|
guest_to_host_candidate_vtxs[g_vtx] = cands
|
|
|
|
# print(guest_to_host_candidate_vtxs)
|
|
|
|
|
|
# transform 'pivot' into something VF2 understands
|
|
graph_pivot = {
|
|
g_names[guest_name] : h_names[host_name]
|
|
for guest_name, host_name in pivot.items()
|
|
if guest_name in g_names
|
|
}
|
|
|
|
obj_conditions = []
|
|
for class_name, class_node in pattern_mm_odapi.get_all_instances("Class"):
|
|
for obj_name, obj_node in pattern_odapi.get_all_instances(class_name):
|
|
python_code = pattern_odapi.get_slot_value_default(obj_node, "condition", 'True')
|
|
if class_name == "GlobalCondition":
|
|
obj_conditions.append((python_code, None))
|
|
else:
|
|
obj_conditions.append((python_code, obj_name))
|
|
|
|
|
|
def check_conditions(name_mapping):
|
|
eval_globals = {
|
|
**bound_api,
|
|
# this time, the real 'matched'-function can be used:
|
|
'matched': lambda name: bottom.read_outgoing_elements(host_m, name_mapping[name])[0],
|
|
**eval_context,
|
|
}
|
|
def check(python_code: str, loc):
|
|
return exec_then_eval(python_code, _globals=eval_globals, _locals=loc)
|
|
|
|
# Attribute conditions
|
|
for pattern_name, host_name in name_mapping.items():
|
|
try:
|
|
python_code = compare.conditions_to_check[pattern_name]
|
|
except KeyError:
|
|
continue
|
|
host_node = odapi.get(host_name)
|
|
with Timer(f'EVAL condition {pattern_name}'):
|
|
if not check(python_code, {'this': host_node}):
|
|
return False
|
|
|
|
for python_code, pattern_el_name in obj_conditions:
|
|
if pattern_el_name == None:
|
|
# GlobalCondition
|
|
with Timer(f'EVAL all global conditions'):
|
|
if not check(python_code, {}):
|
|
return False
|
|
else:
|
|
# object-lvl condition
|
|
host_el_name = name_mapping[pattern_el_name]
|
|
host_node = odapi.get(host_el_name)
|
|
with Timer(f'EVAL local condition {pattern_el_name}'):
|
|
if not check(python_code, {'this': host_node}):
|
|
return False
|
|
return True
|
|
|
|
|
|
compare = RAMCompare(bottom, services_od.OD(host_mm, host_m, state))
|
|
matcher = MatcherVF2(host, guest, compare, guest_to_host_candidate_vtxs)
|
|
for m in matcher.match(graph_pivot):
|
|
# Convert mapping
|
|
name_mapping = {}
|
|
for guest_vtx, host_vtx in m.mapping_vtxs.items():
|
|
if isinstance(guest_vtx, NamedNode) and isinstance(host_vtx, NamedNode):
|
|
name_mapping[guest_vtx.name] = host_vtx.name
|
|
|
|
if not check_conditions(name_mapping):
|
|
continue # not a match after all...
|
|
|
|
yield name_mapping
|