57 lines
2.3 KiB
Python
57 lines
2.3 KiB
Python
from state.devstate import DevState
|
|
from api.od import ODAPI
|
|
from concrete_syntax.textual_od.renderer import render_od
|
|
from bootstrap.scd import bootstrap_scd
|
|
from util import loader
|
|
from transformation.rule import RuleMatcherRewriter, ActionGenerator
|
|
from transformation.ramify import ramify
|
|
from examples.semantics.operational import simulator
|
|
from examples.petrinet.renderer import render_petri_net
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import os
|
|
THIS_DIR = os.path.dirname(__file__)
|
|
|
|
# get file contents as string
|
|
def read_file(filename):
|
|
with open(THIS_DIR+'/'+filename) as file:
|
|
return file.read()
|
|
|
|
|
|
state = DevState()
|
|
scd_mmm = bootstrap_scd(state)
|
|
|
|
# Read models from their files
|
|
mm_cs = read_file('metamodels/mm_design.od')
|
|
mm_rt_cs = mm_cs + read_file('metamodels/mm_runtime.od')
|
|
# m_cs = read_file('models/m_example_simple.od')
|
|
# m_rt_initial_cs = m_cs + read_file('models/m_example_simple_rt_initial.od')
|
|
m_cs = read_file('models/m_example_mutex.od')
|
|
m_rt_initial_cs = m_cs + read_file('models/m_example_mutex_rt_initial.od')
|
|
|
|
# Parse them
|
|
mm = loader.parse_and_check(state, mm_cs, scd_mmm, "Petri-Net Design meta-model")
|
|
mm_rt = loader.parse_and_check(state, mm_rt_cs, scd_mmm, "Petri-Net Runtime meta-model")
|
|
m = loader.parse_and_check(state, m_cs, mm, "Example model")
|
|
m_rt_initial = loader.parse_and_check(state, m_rt_initial_cs, mm_rt, "Example model initial state")
|
|
|
|
mm_rt_ramified = ramify(state, mm_rt)
|
|
|
|
rules = loader.load_rules(state,
|
|
lambda rule_name, kind: f"{THIS_DIR}/operational_semantics/r_{rule_name}_{kind}.od",
|
|
mm_rt_ramified,
|
|
["fire_transition"]) # only 1 rule :(
|
|
|
|
matcher_rewriter = RuleMatcherRewriter(state, mm_rt, mm_rt_ramified)
|
|
action_generator = ActionGenerator(matcher_rewriter, rules)
|
|
|
|
sim = simulator.Simulator(
|
|
action_generator=action_generator,
|
|
decision_maker=simulator.InteractiveDecisionMaker(auto_proceed=False),
|
|
# decision_maker=simulator.RandomDecisionMaker(seed=0),
|
|
renderer=lambda od: render_petri_net(od) + render_od(state, od.m, od.mm),
|
|
# renderer=lambda od: render_od(state, od.m, od.mm),
|
|
)
|
|
|
|
sim.run(ODAPI(state, m_rt_initial, mm_rt))
|