from api.cd import CDAPI from api.od import ODAPI, bind_api_readonly from util.eval import exec_then_eval from state.base import State from uuid import UUID from services.bottom.V0 import Bottom from services.scd import SCD from services import od as services_od from transformation.vf2 import Graph, Edge, Vertex, MatcherVF2 from transformation import ramify import itertools import re import functools from util.timer import Timer class _is_edge: def __repr__(self): return "EDGE" def to_json(self): return "EDGE" # just a unique symbol that is only equal to itself IS_EDGE = _is_edge() class _is_modelref: def __repr__(self): return "REF" def to_json(self): return "REF" IS_MODELREF = _is_modelref() # class IS_TYPE: # def __init__(self, type): # # mvs-node of the type # self.type = type # def __repr__(self): # return f"TYPE({str(self.type)[-4:]})" class NamedNode(Vertex): def __init__(self, value, name): super().__init__(value) # the name of the node in the context of the model # the matcher by default ignores this value self.name = name # MVS-nodes become vertices class MVSNode(NamedNode): def __init__(self, value, node_id, name): super().__init__(value, name) # useful for debugging self.node_id = node_id def __repr__(self): if self.value == None: return f"N({self.name})" if isinstance(self.value, str): return f"N({self.name}=\"{self.value}\")" return f"N({self.name}={self.value})" # if isinstance(self.value, str): # return f"N({self.name}=\"{self.value}\",{str(self.node_id)[-4:]})" # return f"N({self.name}={self.value},{str(self.node_id)[-4:]})" # MVS-edges become vertices. class MVSEdge(NamedNode): def __init__(self, node_id, name): super().__init__(IS_EDGE, name) # useful for debugging self.node_id = node_id def __repr__(self): return f"E({self.name})" # return f"E({self.name}{str(self.node_id)[-4:]})" # dirty way of detecting whether a node is a ModelRef UUID_REGEX = re.compile(r"[0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z]-[0-9a-z][0-9a-z][0-9a-z][0-9a-z]-[0-9a-z][0-9a-z][0-9a-z][0-9a-z]-[0-9a-z][0-9a-z][0-9a-z][0-9a-z]-[0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z][0-9a-z]") # Converts an object diagram in MVS state to the pattern matcher graph type # ModelRefs are flattened def model_to_graph(state: State, model: UUID, metamodel: UUID, _filter=lambda node: True, prefix=""): # with Timer("model_to_graph"): od = services_od.OD(model, metamodel, state) scd = SCD(model, state) scd_mm = SCD(metamodel, state) bottom = Bottom(state) graph = Graph() mvs_edges = [] modelrefs = {} # constraints = {} names = {} def to_vtx(el, name): # print("name:", name) if bottom.is_edge(el): # if filter_constraint: # try: # supposed_obj = bottom.read_edge_source(el) # slot_node = od.get_slot(supposed_obj, "constraint") # if el == slot_node: # # `el` is the constraint-slot # constraints[supposed_obj] = el # return # except: # pass mvs_edges.append(el) edge = MVSEdge(el, name) names[name] = edge return edge # If the value of the el is a ModelRef (only way to detect this is to match a regex - not very clean), then extract it. We'll create a link to the referred model later. value = bottom.read_value(el) if isinstance(value, str): if UUID_REGEX.match(value) != None: # side-effect modelrefs[el] = (UUID(value), name) return MVSNode(IS_MODELREF, el, name) node = MVSNode(value, el, name) names[name] = node return node # Objects and Links become vertices uuid_to_vtx = { node: to_vtx(node, prefix+key) for key in bottom.read_keys(model) for node in bottom.read_outgoing_elements(model, key) if _filter(node) } graph.vtxs = [ vtx for vtx in uuid_to_vtx.values() ] # For every Link, two edges are created (for src and tgt) for mvs_edge in mvs_edges: mvs_src = bottom.read_edge_source(mvs_edge) if mvs_src in uuid_to_vtx: graph.edges.append(Edge( src=uuid_to_vtx[mvs_src], tgt=uuid_to_vtx[mvs_edge], label="outgoing")) mvs_tgt = bottom.read_edge_target(mvs_edge) if mvs_tgt in uuid_to_vtx: graph.edges.append(Edge( src=uuid_to_vtx[mvs_edge], tgt=uuid_to_vtx[mvs_tgt], label="tgt")) for node, (ref_m, name) in modelrefs.items(): vtx = uuid_to_vtx[node] # Get MM of ref'ed model ref_mm, = bottom.read_outgoing_elements(node, "Morphism") # print("modelref type node:", type_node) # Recursively convert ref'ed model to graph # ref_graph = model_to_graph(state, ref_m, ref_mm, prefix=name+'/') vtx.modelref = (ref_m, ref_mm) # We no longer flatten: # # Flatten and create link to ref'ed model # graph.vtxs += ref_model.vtxs # graph.edges += ref_model.edges # graph.edges.append(Edge( # src=uuid_to_vtx[node], # tgt=ref_model.vtxs[0], # which node to link to?? dirty # label="modelref")) def add_types(node): vtx = uuid_to_vtx[node] type_node, = bottom.read_outgoing_elements(node, "Morphism") # Put the type straight into the Vertex-object # The benefit is that our Vertex-matching callback can then be coded cleverly, look at the types first, resulting in better performance vtx.typ = type_node # The old approach (creating special vertices containing the types), commented out: # print('node', node, 'has type', type_node) # We create a Vertex storing the type # type_vertex = Vertex(value=IS_TYPE(type_node)) # graph.vtxs.append(type_vertex) # type_edge = Edge( # src=uuid_to_vtx[node], # tgt=type_vertex, # label="type") # # print(type_edge) # graph.edges.append(type_edge) # Add typing information for: # - classes # - attributes # - associations for class_name, class_node in scd_mm.get_classes().items(): objects = scd.get_typed_by(class_node) # print("typed by:", class_name, objects) for obj_name, obj_node in objects.items(): if _filter(obj_node): add_types(obj_node) for attr_name, attr_node in scd_mm.get_attributes(class_name).items(): attrs = scd.get_typed_by(attr_node) for slot_name, slot_node in attrs.items(): if _filter(slot_node): add_types(slot_node) for assoc_name, assoc_node in scd_mm.get_associations().items(): objects = scd.get_typed_by(assoc_node) # print("typed by:", assoc_name, objects) for link_name, link_node in objects.items(): if _filter(link_node): add_types(link_node) return names, graph # This function returns a Generator of matches. # The idea is that the user can iterate over the match set, lazily generating it: if only interested in the first match, the entire match set doesn't have to be generated. def match_od(state, host_m, host_mm, pattern_m, pattern_mm, pivot={}): bottom = Bottom(state) # compute subtype relations and such: cdapi = CDAPI(state, host_mm) odapi = ODAPI(state, host_m, host_mm) pattern_odapi = ODAPI(state, pattern_m, pattern_mm) pattern_mm_odapi = ODAPI(state, pattern_mm, cdapi.mm) # Function object for pattern matching. Decides whether to match host and guest vertices, where guest is a RAMified instance (e.g., the attributes are all strings with Python expressions), and the host is an instance (=object diagram) of the original model (=class diagram) class RAMCompare: def __init__(self, bottom, host_od): self.bottom = bottom self.host_od = host_od type_model_id = bottom.state.read_dict(bottom.state.read_root(), "SCD") self.scd_model = UUID(bottom.state.read_value(type_model_id)) # constraints need to be checked at the very end, after a complete match is established, because constraint code may refer to matched elements by their name self.conditions_to_check = {} def match_types(self, g_vtx_type, h_vtx_type): # types only match with their supertypes # we assume that 'RAMifies'-traceability links have been created between guest and host types try: g_vtx_unramified_type = ramify.get_original_type(self.bottom, g_vtx_type) except: return False try: host_type_name = cdapi.type_model_names[h_vtx_type] guest_type_name_unramified = cdapi.type_model_names[g_vtx_unramified_type] except KeyError: return False return cdapi.is_subtype( super_type_name=guest_type_name_unramified, sub_type_name=host_type_name) # Memoizing the result of comparison gives a huge performance boost! # Especially `is_subtype_of` is very slow, and will be performed many times over on the same pair of nodes during the matching process. # Assuming the model is not altered *during* matching, this is safe. @functools.cache def __call__(self, g_vtx, h_vtx): # First check if the types match (if we have type-information) if hasattr(g_vtx, 'typ'): if not hasattr(h_vtx, 'typ'): # if guest has a type, host must have a type return False return self.match_types(g_vtx.typ, h_vtx.typ) if hasattr(g_vtx, 'modelref'): if not hasattr(h_vtx, 'modelref'): return False python_code = services_od.read_primitive_value(self.bottom, g_vtx.node_id, pattern_mm)[0] self.conditions_to_check[g_vtx.name] = python_code # self.conditions_to_check.append((python_code, h_vtx.name, g_vtx.name)) return True # do be determined later, if it's actually a match if g_vtx.value == None: return h_vtx.value == None # mvs-edges (which are converted to vertices) only match with mvs-edges if g_vtx.value == IS_EDGE: return h_vtx.value == IS_EDGE if h_vtx.value == IS_EDGE: return False if g_vtx.value == IS_MODELREF: return h_vtx.value == IS_MODELREF if h_vtx.value == IS_MODELREF: return False return True # Convert to format understood by matching algorithm h_names, host = model_to_graph(state, host_m, host_mm) # Only match matchable pattern elements # E.g., the 'condition'-attribute that is added to every class, cannot be matched with anything def is_matchable(pattern_el): pattern_el_name = pattern_odapi.get_name(pattern_el) if pattern_odapi.get_type_name(pattern_el) == "GlobalCondition": return False # Super-cheap and unreliable way of filtering out the 'condition'-attribute, added to every class: return not (pattern_el_name.endswith("condition") # as an extra safety measure, if the user defined her own 'condition' attribute, RAMification turned this into 'RAM_condition', and we can detect this # of course this breaks if the class name already ended with 'RAM', but let's hope that never happens # also, we are assuming the default "RAM_" prefix is used, but the user can change this... and not pattern_el_name.endswith("RAM_condition")) g_names, guest = model_to_graph(state, pattern_m, pattern_mm, _filter=is_matchable) graph_pivot = { g_names[guest_name] : h_names[host_name] for guest_name, host_name in pivot.items() if guest_name in g_names } obj_conditions = [] for class_name, class_node in pattern_mm_odapi.get_all_instances("Class"): for obj_name, obj_node in pattern_odapi.get_all_instances(class_name): python_code = pattern_odapi.get_slot_value_default(obj_node, "condition", 'True') if class_name == "GlobalCondition": obj_conditions.append((python_code, None)) else: obj_conditions.append((python_code, obj_name)) def check_conditions(name_mapping): def check(python_code: str, loc): return exec_then_eval(python_code, _globals={ **bind_api_readonly(odapi), 'matched': lambda name: bottom.read_outgoing_elements(host_m, name_mapping[name])[0], }, _locals=loc) # Attribute conditions for pattern_name, host_name in name_mapping.items(): try: python_code = compare.conditions_to_check[pattern_name] except KeyError: continue host_node = odapi.get(host_name) if not check(python_code, {'this': host_node}): return False for python_code, pattern_el_name in obj_conditions: if pattern_el_name == None: # GlobalCondition if not check(python_code, {}): return False else: # object-lvl condition host_el_name = name_mapping[pattern_el_name] host_node = odapi.get(host_el_name) if not check(python_code, {'this': host_node}): return False return True compare = RAMCompare(bottom, services_od.OD(host_mm, host_m, state)) matcher = MatcherVF2(host, guest, compare) for m in matcher.match(graph_pivot): # Convert mapping name_mapping = {} for guest_vtx, host_vtx in m.mapping_vtxs.items(): if isinstance(guest_vtx, NamedNode) and isinstance(host_vtx, NamedNode): name_mapping[guest_vtx.name] = host_vtx.name if not check_conditions(name_mapping): continue # not a match after all... yield name_mapping