add examples

This commit is contained in:
Joeri Exelmans 2024-11-13 10:07:16 +01:00
parent 8504ba52f6
commit 42757ddc4f
35 changed files with 1104 additions and 609 deletions

View file

@ -98,7 +98,14 @@ port_rt_mm_cs = port_mm_cs + """
BerthState:Class {
# status == empty <=> numShips == 0
constraint = `(get_slot_value(this, "numShips") == 0) == (get_slot_value(this, "status") == "empty")`;
constraint = ```
errors = []
numShips = get_slot_value(this, "numShips")
status = get_slot_value(this, "status")
if (numShips == 0) != (status == "empty"):
errors.append(f"Inconsistent: numShips = {numShips}, but status = {status}")
errors
```;
}
:Inheritance (BerthState -> PlaceState)

View file

@ -0,0 +1,62 @@
import urllib.parse
from state.devstate import DevState
from bootstrap.scd import bootstrap_scd
from framework.conformance import Conformance, render_conformance_check_result
from concrete_syntax.textual_od import parser
from concrete_syntax.plantuml.renderer import render_object_diagram, render_class_diagram
from api.od import ODAPI
from transformation.ramify import ramify
from examples.semantics.operational.simulator import Simulator, RandomDecisionMaker, InteractiveDecisionMaker
from examples.semantics.operational.port import models
from examples.semantics.operational.port.helpers import design_to_state, state_to_design, get_time
from examples.semantics.operational.port.renderer import render_port_textual, render_port_graphviz
from examples.semantics.operational.port import rulebased_sem
state = DevState()
scd_mmm = bootstrap_scd(state) # Load meta-meta-model
### Load (meta-)models ###
def parse_and_check(m_cs: str, mm, descr: str):
m = parser.parse_od(
state,
m_text=m_cs,
mm=mm)
conf = Conformance(state, m, mm)
print(descr, "...", render_conformance_check_result(conf.check_nominal()))
return m
port_mm = parse_and_check(models.port_mm_cs, scd_mmm, "MM")
port_m = parse_and_check(models.port_m_cs, port_mm, "M")
port_rt_mm = parse_and_check(models.port_rt_mm_cs, scd_mmm, "RT-MM")
port_rt_m = parse_and_check(models.port_rt_m_cs, port_rt_mm, "RT-M")
print()
# print(render_class_diagram(state, port_rt_mm))
### Simulate ###
port_rt_mm_ramified = ramify(state, port_rt_mm)
rulebased_action_generator = rulebased_sem.get_action_generator(state, port_rt_mm, port_rt_mm_ramified)
termination_condition = rulebased_sem.TerminationCondition(state, port_rt_mm_ramified)
sim = Simulator(
action_generator=rulebased_action_generator,
# decision_maker=RandomDecisionMaker(seed=2),
decision_maker=InteractiveDecisionMaker(),
termination_condition=termination_condition,
check_conformance=True,
verbose=True,
renderer=render_port_textual,
# renderer=render_port_graphviz,
)
od = ODAPI(state, port_rt_m, port_rt_mm)
sim.run(od)

View file

@ -0,0 +1,67 @@
### Operational Semantics - defined by rule-based model transformation ###
from concrete_syntax.textual_od.parser import parse_od
from transformation.rule import Rule, RuleMatcherRewriter, PriorityActionGenerator
from transformation.matcher.mvs_adapter import match_od
from util import loader
import os
THIS_DIR = os.path.dirname(__file__)
# kind: lhs, rhs, nac
get_filename = lambda rule_name, kind: f"{THIS_DIR}/rules/r_{rule_name}_{kind}.od"
def get_action_generator(state, rt_mm, rt_mm_ramified):
matcher_rewriter = RuleMatcherRewriter(state, rt_mm, rt_mm_ramified)
#############################################################################
# TO IMPLEMENT: Full semantics as a set of rule-based model transformations #
rules0_dict = loader.load_rules(state, get_filename, rt_mm_ramified,
["ship_sinks"] # <- list of rule_name of equal priority
)
rules1_dict = loader.load_rules(state, get_filename, rt_mm_ramified,
["ship_appears_in_berth"]
)
# rules2_dict = ...
generator = PriorityActionGenerator(matcher_rewriter, [
rules0_dict, # highest priority
rules1_dict, # lower priority
# rules2_dict, # lowest priority
])
# TO IMPLEMENT: Full semantics as a set of rule-based model transformations #
#############################################################################
return generator
# The termination condition can also be specified as a pattern:
class TerminationCondition:
def __init__(self, state, rt_mm_ramified):
self.state = state
self.rt_mm_ramified = rt_mm_ramified
# TO IMPLEMENT: terminate simulation when the place 'served' contains 2 ships.
########################################
# You should only edit the pattern below
pattern_cs = """
# Placeholder to make the termination condition never hold:
:GlobalCondition {
condition = `False`;
}
"""
# You should only edit the pattern above
########################################
self.pattern = parse_od(state, pattern_cs, rt_mm_ramified)
def __call__(self, od):
for match in match_od(self.state, od.m, od.mm, self.pattern, self.rt_mm_ramified):
# stop after the first match (no need to look for more matches):
return "There are 2 ships served." # Termination condition statisfied

View file

@ -0,0 +1,13 @@
The names of the files in this directory are important.
A rule must always be named:
r_<rule_name>_<lhs|rhs|nac>.od
It is allowed to have more than one NAC. In this case, the NACs must be named:
r_<rule_name>_nac.od
r_<rule_name>_nac2.od
r_<rule_name>_nac3.od
...
For the assignment, you can delete the existing rules (they are nonsense) and start fresh.

View file

@ -0,0 +1,4 @@
berthState:RAM_BerthState {
RAM_numShips = `get_value(this) == 0`;
RAM_status = `get_value(this) == "empty"`;
}

View file

@ -0,0 +1,4 @@
berthState:RAM_BerthState {
RAM_numShips = `1`;
RAM_status = `"served"`;
}

View file

@ -0,0 +1,5 @@
# Find any place that has at least one ship:
placeState:RAM_PlaceState {
RAM_numShips = `get_value(this) > 0`;
}

View file

@ -0,0 +1,4 @@
placeState:RAM_PlaceState {
# Decrement number of ships:
RAM_numShips = `get_value(this) - 1`;
}

View file

@ -10,12 +10,10 @@ from concrete_syntax.textual_od.renderer import render_od
from transformation.cloner import clone_od
from api.od import ODAPI
class DecisionMaker:
@abc.abstractmethod
def __call__(self, actions):
pass
from util.simulator import MinimalSimulator, DecisionMaker, RandomDecisionMaker, InteractiveDecisionMaker
class Simulator:
class Simulator(MinimalSimulator):
def __init__(self,
action_generator,
decision_maker: DecisionMaker,
@ -24,51 +22,26 @@ class Simulator:
verbose=True,
renderer=lambda od: render_od(od.state, od.m, od.mm),
):
self.action_generator = action_generator
self.decision_maker = decision_maker
self.termination_condition = termination_condition
super().__init__(
action_generator=action_generator,
decision_maker=decision_maker,
termination_condition=lambda od: self.check_render_termination_condition(od),
verbose=verbose,
)
self.check_conformance = check_conformance
self.verbose = verbose
self.actual_termination_condition = termination_condition
self.renderer = renderer
def __print(self, *args):
if self.verbose:
print(*args)
# Run simulation until termination condition satisfied
def run(self, od: ODAPI):
self.__print("Start simulation")
self.__print(f"Decision maker: {self.decision_maker}")
step_counter = 0
while True:
self.__print("--------------")
self.__print(indent(self.renderer(od), 4))
self.__print("--------------")
termination_reason = self.termination_condition(od)
if termination_reason != None:
self.__print(f"Termination condition satisfied.\nReason: {termination_reason}.")
break
actions = self.action_generator(od)
chosen_action = self.decision_maker(actions)
if chosen_action == None:
self.__print(f"No enabled actions.")
break
(od, msgs) = chosen_action()
self.__print(indent('\n'.join(f"{msg}" for msg in msgs), 2))
step_counter += 1
if self.check_conformance:
self.__print()
conf = Conformance(od.state, od.m, od.mm)
self.__print(render_conformance_check_result(conf.check_nominal()))
self.__print(f"Executed {step_counter} steps.")
return od
def check_render_termination_condition(self, od):
# A termination condition checker that also renders the model, and performs conformance check
self._print("--------------")
self._print(indent(self.renderer(od), 2))
self._print("--------------")
if self.check_conformance:
conf = Conformance(od.state, od.m, od.mm)
self._print(render_conformance_check_result(conf.check_nominal()))
self._print()
return self.actual_termination_condition(od)
def make_actions_pure(actions, od):
# Copy model before modifying it
@ -81,65 +54,17 @@ def make_actions_pure(actions, od):
for descr, action in actions:
yield (descr, functools.partial(exec_pure, action, od))
def filter_valid_actions(pure_actions):
result = {}
def make_tuple(new_od, msgs):
return (new_od, msgs)
for name, callback in pure_actions:
print(f"attempt '{name}' ...", end='\r')
# print(f"attempt '{name}' ...", end='\r')
(new_od, msgs) = callback()
conf = Conformance(new_od.state, new_od.m, new_od.mm)
errors = conf.check_nominal()
# erase current line:
print(" ", end='\r')
# print(" ", end='\r')
if len(errors) == 0:
# updated RT-M is conform, we have a valid action:
yield (name, functools.partial(make_tuple, new_od, msgs))
class RandomDecisionMaker(DecisionMaker):
def __init__(self, seed=0, verbose=True):
self.seed = seed
self.r = random.Random(seed)
def __str__(self):
return f"RandomDecisionMaker(seed={self.seed})"
def __call__(self, actions):
arr = [action for descr, action in actions]
i = math.floor(self.r.random()*len(arr))
return arr[i]
class InteractiveDecisionMaker(DecisionMaker):
# auto_proceed: whether to prompt if there is only one enabled action
def __init__(self, msg="Select action:", auto_proceed=False):
self.msg = msg
self.auto_proceed = auto_proceed
def __str__(self):
return f"InteractiveDecisionMaker()"
def __call__(self, actions):
arr = []
for i, (key, result) in enumerate(actions):
print(f" {i}. {key}")
arr.append(result)
if len(arr) == 0:
return
if len(arr) == 1 and self.auto_proceed:
return arr[0]
def __choose():
sys.stdout.write(f"{self.msg} ")
try:
raw = input()
choice = int(raw) # may raise ValueError
if choice >= 0 and choice < len(arr):
return arr[choice]
except ValueError:
pass
print("Invalid option")
return __choose()
return __choose()

View file

@ -1,337 +0,0 @@
import functools
from state.devstate import DevState
from bootstrap.scd import bootstrap_scd
from framework.conformance import Conformance, render_conformance_check_result
from concrete_syntax.textual_od import parser, renderer
from concrete_syntax.plantuml import renderer as plantuml
from api.od import ODAPI
from examples.semantics.operational.simulator import Simulator, RandomDecisionMaker, InteractiveDecisionMaker, make_actions_pure, filter_valid_actions
state = DevState()
scd_mmm = bootstrap_scd(state) # Load meta-meta-model
### Load (meta-)models ###
# Design meta-model
woods_mm_cs = """
Animal:Class {
abstract = True;
}
Bear:Class
:Inheritance (Bear -> Animal)
Man:Class {
lower_cardinality = 1;
upper_cardinality = 2;
constraint = `get_value(get_slot(this, "weight")) > 20`;
}
:Inheritance (Man -> Animal)
Man_weight:AttributeLink (Man -> Integer) {
name = "weight";
optional = False;
}
afraidOf:Association (Man -> Animal) {
source_upper_cardinality = 6;
target_lower_cardinality = 1;
}
"""
# Runtime meta-model
woods_rt_mm_cs = woods_mm_cs + """
AnimalState:Class {
abstract = True;
}
AnimalState_dead:AttributeLink (AnimalState -> Boolean) {
name = "dead";
optional = False;
}
of:Association (AnimalState -> Animal) {
source_lower_cardinality = 1;
source_upper_cardinality = 1;
target_lower_cardinality = 1;
target_upper_cardinality = 1;
}
BearState:Class {
constraint = `get_type_name(get_target(get_outgoing(this, "of")[0])) == "Bear"`;
}
:Inheritance (BearState -> AnimalState)
BearState_hunger:AttributeLink (BearState -> Integer) {
name = "hunger";
optional = False;
constraint = ```
val = get_value(get_target(this))
val >= 0 and val <= 100
```;
}
ManState:Class {
constraint = `get_type_name(get_target(get_outgoing(this, "of")[0])) == "Man"`;
}
:Inheritance (ManState -> AnimalState)
attacking:Association (AnimalState -> ManState) {
# Animal can only attack one Man at a time
target_upper_cardinality = 1;
# Man can only be attacked by one Animal at a time
source_upper_cardinality = 1;
constraint = ```
attacker = get_source(this)
if get_type_name(attacker) == "BearState":
# only BearState has 'hunger' attribute
hunger = get_value(get_slot(attacker, "hunger"))
else:
hunger = 100 # Man can always attack
attacker_dead = get_value(get_slot(attacker, "dead"))
attacked_state = get_target(this)
attacked_dead = get_value(get_slot(attacked_state, "dead"))
(
hunger >= 50
and not attacker_dead # cannot attack while dead
and not attacked_dead # cannot attack whoever is dead
)
```;
}
attacking_starttime:AttributeLink (attacking -> Integer) {
name = "starttime";
optional = False;
constraint = ```
val = get_value(get_target(this))
_, clock = get_all_instances("Clock")[0]
current_time = get_slot_value(clock, "time")
val >= 0 and val <= current_time
```;
}
# Just a clock singleton for keeping the time
Clock:Class {
lower_cardinality = 1;
upper_cardinality = 1;
}
Clock_time:AttributeLink (Clock -> Integer) {
name = "time";
optional = False;
constraint = `get_value(get_target(this)) >= 0`;
}
"""
# Our design model - the part that doesn't change
woods_m_cs = """
george:Man {
weight = 80;
}
bill:Man {
weight = 70;
}
teddy:Bear
mrBrown:Bear
# george is afraid of both bears
:afraidOf (george -> teddy)
:afraidOf (george -> mrBrown)
# the men are afraid of each other
:afraidOf (bill -> george)
:afraidOf (george -> bill)
"""
# Our runtime model - the part that changes with every execution step
woods_rt_initial_m_cs = woods_m_cs + """
georgeState:ManState {
dead = False;
}
:of (georgeState -> george)
billState:ManState {
dead = False;
}
:of (billState -> bill)
teddyState:BearState {
dead = False;
hunger = 40;
}
:of (teddyState -> teddy)
mrBrownState:BearState {
dead = False;
hunger = 80;
}
:of (mrBrownState -> mrBrown)
clock:Clock {
time = 0;
}
"""
def parse_and_check(m_cs: str, mm, descr: str):
m = parser.parse_od(
state,
m_text=m_cs,
mm=mm)
conf = Conformance(state, m, mm)
print(descr, "...", render_conformance_check_result(conf.check_nominal()))
return m
woods_mm = parse_and_check(woods_mm_cs, scd_mmm, "MM")
woods_rt_mm = parse_and_check(woods_rt_mm_cs, scd_mmm, "RT-MM")
woods_m = parse_and_check(woods_m_cs, woods_mm, "M")
woods_rt_m = parse_and_check(woods_rt_initial_m_cs, woods_rt_mm, "RT-M")
print()
### Semantics ###
# Helpers
def state_of(od, animal):
return od.get_source(od.get_incoming(animal, "of")[0])
def animal_of(od, state):
return od.get_target(od.get_outgoing(state, "of")[0])
def get_time(od):
_, clock = od.get_all_instances("Clock")[0]
return clock, od.get_slot_value(clock, "time")
# Action: Time advances, whoever is being attacked dies, bears become hungrier
def action_advance_time(od):
msgs = []
clock, old_time = get_time(od)
new_time = old_time + 1
od.set_slot_value(clock, "time", new_time)
for _, attacking_link in od.get_all_instances("attacking"):
man_state = od.get_target(attacking_link)
animal_state = od.get_source(attacking_link)
if od.get_type_name(animal_state) == "BearState":
od.set_slot_value(animal_state, "hunger", max(od.get_slot_value(animal_state, "hunger") - 50, 0))
od.set_slot_value(man_state, "dead", True)
od.delete(attacking_link)
msgs.append(f"{od.get_name(animal_of(od, animal_state))} kills {od.get_name(animal_of(od, man_state))}.")
for _, bear_state in od.get_all_instances("BearState"):
if od.get_slot_value(bear_state, "dead"):
continue # bear already dead
old_hunger = od.get_slot_value(bear_state, "hunger")
new_hunger = min(old_hunger + 10, 100)
od.set_slot_value(bear_state, "hunger", new_hunger)
bear = od.get_target(od.get_outgoing(bear_state, "of")[0])
bear_name = od.get_name(bear)
if new_hunger == 100:
od.set_slot_value(bear_state, "dead", True)
msgs.append(f"Bear {bear_name} dies of hunger.")
else:
msgs.append(f"Bear {bear_name}'s hunger level is now {new_hunger}.")
return msgs
# Action: Animal attacks Man
# Note: We must use the names of the objects as parameters, because when cloning, the IDs of objects change!
def action_attack(od, animal_name: str, man_name: str):
msgs = []
animal = od.get(animal_name)
man = od.get(man_name)
animal_state = state_of(od, animal)
man_state = state_of(od, man)
attack_link = od.create_link(None, # auto-generate link name
"attacking", animal_state, man_state)
_, clock = od.get_all_instances("Clock")[0]
current_time = od.get_slot_value(clock, "time")
od.set_slot_value(attack_link, "starttime", current_time)
msgs.append(f"{animal_name} is now attacking {man_name}")
return msgs
# Get all actions that can be performed (including those that bring us to a non-conforming state)
def get_all_actions(od):
def _generate_actions(od):
# can always advance time:
yield ("advance time", action_advance_time)
# if A is afraid of B, then B can attack A:
for _, afraid_link in od.get_all_instances("afraidOf"):
man = od.get_source(afraid_link)
animal = od.get_target(afraid_link)
animal_name = od.get_name(animal)
man_name = od.get_name(man)
man_state = state_of(od, man)
animal_state = state_of(od, animal)
descr = f"{animal_name} ({od.get_type_name(animal)}) attacks {man_name} ({od.get_type_name(man)})"
yield (descr, functools.partial(action_attack, animal_name=animal_name, man_name=man_name))
return make_actions_pure(_generate_actions(od), od)
# Only get those actions that bring us to a conforming state
def get_valid_actions(od):
return filter_valid_actions(get_all_actions(od))
# Render our run-time state to a string
def render_woods(od):
txt = ""
_, time = get_time(od)
txt += f"T = {time}.\n"
txt += "Bears:\n"
def render_attacking(animal_state):
attacking = od.get_outgoing(animal_state, "attacking")
if len(attacking) == 1:
whom_state = od.get_target(attacking[0])
whom_name = od.get_name(animal_of(od, whom_state))
return f" attacking {whom_name}"
else:
return ""
def render_dead(animal_state):
return 'dead' if od.get_slot_value(animal_state, 'dead') else 'alive'
for _, bear_state in od.get_all_instances("BearState"):
bear = animal_of(od, bear_state)
hunger = od.get_slot_value(bear_state, "hunger")
txt += f" 🐻 {od.get_name(bear)} (hunger: {hunger}, {render_dead(bear_state)}) {render_attacking(bear_state)}\n"
txt += "Men:\n"
for _, man_state in od.get_all_instances("ManState"):
man = animal_of(od, man_state)
attacked_by = od.get_incoming(man_state, "attacking")
if len(attacked_by) == 1:
whom_state = od.get_source(attacked_by[0])
whom_name = od.get_name(animal_of(od, whom_state))
being_attacked = f" being attacked by {whom_name}"
else:
being_attacked = ""
txt += f" 👨 {od.get_name(man)} ({render_dead(man_state)}) {render_attacking(man_state)}{being_attacked}\n"
return txt
# When should simulation stop?
def termination_condition(od):
_, time = get_time(od)
if time >= 10:
return "Took too long"
# End simulation when 2 animals are dead
who_is_dead = []
for _, animal_state in od.get_all_instances("AnimalState"):
if od.get_slot_value(animal_state, "dead"):
animal_name = od.get_name(animal_of(od, animal_state))
who_is_dead.append(animal_name)
if len(who_is_dead) >= 2:
return f"{' and '.join(who_is_dead)} are dead"
sim = Simulator(
action_generator=get_valid_actions,
# action_generator=get_all_actions,
decision_maker=RandomDecisionMaker(seed=0),
# decision_maker=InteractiveDecisionMaker(),
termination_condition=termination_condition,
check_conformance=False,
verbose=True,
renderer=render_woods,
)
od = ODAPI(state, woods_rt_m, woods_rt_mm)
sim.run(od)