pattern matching: convert tabs to spaces

This commit is contained in:
Joeri Exelmans 2024-09-04 09:34:26 +02:00
parent 88172d64c5
commit 3ae35a87d0
5 changed files with 929 additions and 915 deletions

View file

@ -1,8 +1,8 @@
# coding: utf-8
"""
Author: Sten Vercamman
Univeristy of Antwerp
Author: Sten Vercamman
Univeristy of Antwerp
Example code for paper: Efficient model transformations for novices
url: http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/projects/Sten.Vercammen
@ -25,178 +25,178 @@ import collections
import random
class GraphGenerator(object):
"""
Generates a random Graph with dv an array containing all vertices (there type),
de an array containing all edges (their type) and dc_inc an array representing
the incoming edges (analogue for dc_out)
"""
def __init__(self, dv, de, dc_inc, dc_out, debug=False):
if len(de) != len(dc_inc):
raise ValueError('de and dc_inc should be the same length.')
if len(de) != len(dc_out):
raise ValueError('de and dc_out should be the same length.')
"""
Generates a random Graph with dv an array containing all vertices (there type),
de an array containing all edges (their type) and dc_inc an array representing
the incoming edges (analogue for dc_out)
"""
def __init__(self, dv, de, dc_inc, dc_out, debug=False):
if len(de) != len(dc_inc):
raise ValueError('de and dc_inc should be the same length.')
if len(de) != len(dc_out):
raise ValueError('de and dc_out should be the same length.')
self.dv = dv
self.de = de
self.dc_inc = dc_inc
self.dc_out = dc_out
self.dv = dv
self.de = de
self.dc_inc = dc_inc
self.dc_out = dc_out
# print for debugging, so you know the used values
if debug:
print('dv')
print('[',','.join(map(str,dv)),']')
print('_____')
print('de')
print('[',','.join(map(str,de)),']')
print('_____')
print('dc_inc')
print('[',','.join(map(str,dc_inc)),']')
print('_____')
print('dc_out')
print('[',','.join(map(str,dc_out)),']')
print('_____')
# print for debugging, so you know the used values
if debug:
print('dv')
print('[',','.join(map(str,dv)),']')
print('_____')
print('de')
print('[',','.join(map(str,de)),']')
print('_____')
print('dc_inc')
print('[',','.join(map(str,dc_inc)),']')
print('_____')
print('dc_out')
print('[',','.join(map(str,dc_out)),']')
print('_____')
self.graph = graph.Graph()
self.vertices = []
# create all the vertices:
for v_type in self.dv:
# v_type represents the type of the vertex
self.vertices.append(self.graph.addCreateVertex('v' + str(v_type)))
self.graph = graph.Graph()
self.vertices = []
# create all the vertices:
for v_type in self.dv:
# v_type represents the type of the vertex
self.vertices.append(self.graph.addCreateVertex('v' + str(v_type)))
index = 0
# create all edges
for e_type in self.de:
# e_type represents the type of the edge
src = self.vertices[self.dc_out[index]] # get src vertex
tgt = self.vertices[self.dc_inc[index]] # get tgt vertex
self.graph.addCreateEdge(src, tgt, 'e' + str(e_type)) # create edge
index += 1
index = 0
# create all edges
for e_type in self.de:
# e_type represents the type of the edge
src = self.vertices[self.dc_out[index]] # get src vertex
tgt = self.vertices[self.dc_inc[index]] # get tgt vertex
self.graph.addCreateEdge(src, tgt, 'e' + str(e_type)) # create edge
index += 1
def getRandomGraph(self):
return self.graph
def getRandomGraph(self):
return self.graph
def getRandomPattern(self, max_nr_of_v, max_nr_of_e, start=0, debug=False):
# create pattern
pattern = graph.Graph()
def getRandomPattern(self, max_nr_of_v, max_nr_of_e, start=0, debug=False):
# create pattern
pattern = graph.Graph()
# map from graph to new pattern
graph_to_pattern = {}
# map from graph to new pattern
graph_to_pattern = {}
# map of possible edges
# we don't need a dict, but python v2.7 does not have an OrderedSet
possible_edges = collections.OrderedDict()
# map of possible edges
# we don't need a dict, but python v2.7 does not have an OrderedSet
possible_edges = collections.OrderedDict()
# set of chosen edges
chosen_edges = set()
# set of chosen edges
chosen_edges = set()
# start node from graph
g_node = self.vertices[start]
p_node = pattern.addCreateVertex(g_node.type)
# for debuging, print the order in which the pattern gets created and
# connects it edges
if debug:
print('v'+str(id(p_node))+'=pattern.addCreateVertex('+"'"+str(g_node.type)+"'"+')')
# save corrolation
graph_to_pattern[g_node] = p_node
# start node from graph
g_node = self.vertices[start]
p_node = pattern.addCreateVertex(g_node.type)
# for debuging, print the order in which the pattern gets created and
# connects it edges
if debug:
print('v'+str(id(p_node))+'=pattern.addCreateVertex('+"'"+str(g_node.type)+"'"+')')
# save corrolation
graph_to_pattern[g_node] = p_node
def insertAllEdges(edges, possible_edges, chosen_edges):
for edge in edges:
# if we did not chose the edge
if edge not in chosen_edges:
# if inc_edge not in possible edges, add it with value 1
possible_edges[edge] = None
def insertAllEdges(edges, possible_edges, chosen_edges):
for edge in edges:
# if we did not chose the edge
if edge not in chosen_edges:
# if inc_edge not in possible edges, add it with value 1
possible_edges[edge] = None
def insertEdges(g_vertex, possible_edges, chosen_edges):
insertAllEdges(g_vertex.incoming_edges, possible_edges, chosen_edges)
insertAllEdges(g_vertex.outgoing_edges, possible_edges, chosen_edges)
def insertEdges(g_vertex, possible_edges, chosen_edges):
insertAllEdges(g_vertex.incoming_edges, possible_edges, chosen_edges)
insertAllEdges(g_vertex.outgoing_edges, possible_edges, chosen_edges)
insertEdges(g_node, possible_edges, chosen_edges)
insertEdges(g_node, possible_edges, chosen_edges)
while max_nr_of_v > len(graph_to_pattern) and max_nr_of_e > len(chosen_edges):
candidate = None
if len(possible_edges) == 0:
break
# get a random number between 0 and len(possible_edges)
# We us a triangular distribution to approximate the fact that
# the first element is the longest in the possible_edges and
# already had the post chance of beeing choosen.
# (The approximation is because the first few ellements where
# added in the same itteration, but doing this exact is
# computationally expensive.)
if len(possible_edges) == 1:
randie = 0
else:
randie = int(round(random.triangular(1, len(possible_edges), len(possible_edges)))) - 1
candidate = list(possible_edges.keys())[randie]
del possible_edges[candidate]
chosen_edges.add(candidate)
while max_nr_of_v > len(graph_to_pattern) and max_nr_of_e > len(chosen_edges):
candidate = None
if len(possible_edges) == 0:
break
# get a random number between 0 and len(possible_edges)
# We us a triangular distribution to approximate the fact that
# the first element is the longest in the possible_edges and
# already had the post chance of beeing choosen.
# (The approximation is because the first few ellements where
# added in the same itteration, but doing this exact is
# computationally expensive.)
if len(possible_edges) == 1:
randie = 0
else:
randie = int(round(random.triangular(1, len(possible_edges), len(possible_edges)))) - 1
candidate = list(possible_edges.keys())[randie]
del possible_edges[candidate]
chosen_edges.add(candidate)
src = graph_to_pattern.get(candidate.src)
tgt = graph_to_pattern.get(candidate.tgt)
src_is_new = True
if src != None and tgt != None:
# create edge between source and target
pattern.addCreateEdge(src, tgt, candidate.type)
if debug:
print('pattern.addCreateEdge('+'v'+str(id(src))+', '+'v'+str(id(tgt))+', '+"'"+str(candidate.type)+"'"+')')
# skip adding new edges
continue
elif src == None:
# create pattern vertex
src = pattern.addCreateVertex(candidate.src.type)
if debug:
print('v'+str(id(src))+'=pattern.addCreateVertex('+"'"+str(candidate.src.type)+"'"+')')
# map newly created pattern vertex
graph_to_pattern[candidate.src] = src
# create edge between source and target
pattern.addCreateEdge(src, tgt, candidate.type)
if debug:
print('pattern.addCreateEdge('+'v'+str(id(src))+', '+'v'+str(id(tgt))+', '+"'"+str(candidate.type)+"'"+')')
elif tgt == None:
src_is_new = False
# create pattern vertex
tgt = pattern.addCreateVertex(candidate.tgt.type)
if debug:
print('v'+str(id(tgt))+'=pattern.addCreateVertex('+"'"+str(candidate.tgt.type)+"'"+')')
# map newly created pattern vertex
graph_to_pattern[candidate.tgt] = tgt
# create edge between source and target
pattern.addCreateEdge(src, tgt, candidate.type)
if debug:
print('pattern.addCreateEdge('+'v'+str(id(src))+', '+'v'+str(id(tgt))+', '+"'"+str(candidate.type)+"'"+')')
else:
raise RuntimeError('Bug: src or tgt of edge should be in out pattern')
src = graph_to_pattern.get(candidate.src)
tgt = graph_to_pattern.get(candidate.tgt)
src_is_new = True
if src != None and tgt != None:
# create edge between source and target
pattern.addCreateEdge(src, tgt, candidate.type)
if debug:
print('pattern.addCreateEdge('+'v'+str(id(src))+', '+'v'+str(id(tgt))+', '+"'"+str(candidate.type)+"'"+')')
# skip adding new edges
continue
elif src == None:
# create pattern vertex
src = pattern.addCreateVertex(candidate.src.type)
if debug:
print('v'+str(id(src))+'=pattern.addCreateVertex('+"'"+str(candidate.src.type)+"'"+')')
# map newly created pattern vertex
graph_to_pattern[candidate.src] = src
# create edge between source and target
pattern.addCreateEdge(src, tgt, candidate.type)
if debug:
print('pattern.addCreateEdge('+'v'+str(id(src))+', '+'v'+str(id(tgt))+', '+"'"+str(candidate.type)+"'"+')')
elif tgt == None:
src_is_new = False
# create pattern vertex
tgt = pattern.addCreateVertex(candidate.tgt.type)
if debug:
print('v'+str(id(tgt))+'=pattern.addCreateVertex('+"'"+str(candidate.tgt.type)+"'"+')')
# map newly created pattern vertex
graph_to_pattern[candidate.tgt] = tgt
# create edge between source and target
pattern.addCreateEdge(src, tgt, candidate.type)
if debug:
print('pattern.addCreateEdge('+'v'+str(id(src))+', '+'v'+str(id(tgt))+', '+"'"+str(candidate.type)+"'"+')')
else:
raise RuntimeError('Bug: src or tgt of edge should be in out pattern')
# select the vertex from the chosen edge that was not yet part of the pattern
if src_is_new:
new_vertex = candidate.src
else:
new_vertex = candidate.tgt
# insert all edges from the new vertex
insertEdges(new_vertex, possible_edges, chosen_edges)
# select the vertex from the chosen edge that was not yet part of the pattern
if src_is_new:
new_vertex = candidate.src
else:
new_vertex = candidate.tgt
# insert all edges from the new vertex
insertEdges(new_vertex, possible_edges, chosen_edges)
return pattern
return pattern
def createConstantPattern():
"""
Use this to create the same pattern over and over again.
"""
# create pattern
pattern = graph.Graph()
def createConstantPattern():
"""
Use this to create the same pattern over and over again.
"""
# create pattern
pattern = graph.Graph()
# copy and paste printed pattern from debug output or create a pattern
# below the following line:
# ----------------------------------------------------------------------
v4447242448=pattern.addCreateVertex('v4')
v4457323088=pattern.addCreateVertex('v6')
pattern.addCreateEdge(v4447242448, v4457323088, 'e4')
v4457323216=pattern.addCreateVertex('v8')
pattern.addCreateEdge(v4457323216, v4447242448, 'e4')
v4457323344=pattern.addCreateVertex('v7')
pattern.addCreateEdge(v4457323216, v4457323344, 'e3')
v4457323472=pattern.addCreateVertex('v7')
pattern.addCreateEdge(v4457323344, v4457323472, 'e1')
# copy and paste printed pattern from debug output or create a pattern
# below the following line:
# ----------------------------------------------------------------------
v4447242448=pattern.addCreateVertex('v4')
v4457323088=pattern.addCreateVertex('v6')
pattern.addCreateEdge(v4447242448, v4457323088, 'e4')
v4457323216=pattern.addCreateVertex('v8')
pattern.addCreateEdge(v4457323216, v4447242448, 'e4')
v4457323344=pattern.addCreateVertex('v7')
pattern.addCreateEdge(v4457323216, v4457323344, 'e3')
v4457323472=pattern.addCreateVertex('v7')
pattern.addCreateEdge(v4457323344, v4457323472, 'e1')
# ----------------------------------------------------------------------
return pattern
# ----------------------------------------------------------------------
return pattern

View file

@ -1,8 +1,8 @@
# coding: utf-8
"""
Author: Sten Vercamman
Univeristy of Antwerp
Author: Sten Vercamman
Univeristy of Antwerp
Example code for paper: Efficient model transformations for novices
url: http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/projects/Sten.Vercammen
@ -19,139 +19,139 @@ at the workings behind various techniques for efficient pattern matching.
"""
class Properties(object):
"""
Holds all Properties.
"""
def __init__(self):
# member variables:
self.properties = {}
"""
Holds all Properties.
"""
def __init__(self):
# member variables:
self.properties = {}
def addProperty(self, name, value):
"""
Adds property (overrides if name already exists).
"""
self.properties[name] = value
def addProperty(self, name, value):
"""
Adds property (overrides if name already exists).
"""
self.properties[name] = value
def getProperty(self, name):
"""
Returns property with given name or None if not found.
"""
return self.properties.get(name)
def getProperty(self, name):
"""
Returns property with given name or None if not found.
"""
return self.properties.get(name)
class Edge(Properties):
"""
Describes an Edge with source and target Node.
The Edge can have several properties, like a name, a weight, etc...
"""
def __init__(self, src, tgt, str_type=None):
# Call parent class constructor
Properties.__init__(self)
# member variables:
self.src = src
self.tgt = tgt
self.type = str_type
"""
Describes an Edge with source and target Node.
The Edge can have several properties, like a name, a weight, etc...
"""
def __init__(self, src, tgt, str_type=None):
# Call parent class constructor
Properties.__init__(self)
# member variables:
self.src = src
self.tgt = tgt
self.type = str_type
class Vertex(Properties):
"""
Describes a Vertex with incoming, outgoing and undirected (both ways) edges.
The vertex can have several properties, like a name, a weight, etc...
"""
def __init__(self, str_type):
# Call parent class constructor
Properties.__init__(self)
# member variables:
self.incoming_edges = set() # undirected edges should be stored both in
self.outgoing_edges = set() # incoming and outgoing edges
self.type = str_type
"""
Describes a Vertex with incoming, outgoing and undirected (both ways) edges.
The vertex can have several properties, like a name, a weight, etc...
"""
def __init__(self, str_type):
# Call parent class constructor
Properties.__init__(self)
# member variables:
self.incoming_edges = set() # undirected edges should be stored both in
self.outgoing_edges = set() # incoming and outgoing edges
self.type = str_type
def addIncomingEdge(self, edge):
"""
Adds an incoming Edge.
"""
if not isinstance(edge, Edge):
raise TypeError('addIncomingEdge without it being an edge')
self.incoming_edges.add(edge)
def addIncomingEdge(self, edge):
"""
Adds an incoming Edge.
"""
if not isinstance(edge, Edge):
raise TypeError('addIncomingEdge without it being an edge')
self.incoming_edges.add(edge)
def addOutgoingEdge(self, edge):
"""
Adds an outgoing Edge.
"""
if not isinstance(edge, Edge):
raise TypeError('addOutgoingEdge without it being an edge')
self.outgoing_edges.add(edge)
def addOutgoingEdge(self, edge):
"""
Adds an outgoing Edge.
"""
if not isinstance(edge, Edge):
raise TypeError('addOutgoingEdge without it being an edge')
self.outgoing_edges.add(edge)
def addUndirectedEdge(self, edge):
"""
Adds an undirected (or bi-directed) Edge.
"""
self.addIncomingEdge(edge)
self.addOutgoingEdge(edge)
def addUndirectedEdge(self, edge):
"""
Adds an undirected (or bi-directed) Edge.
"""
self.addIncomingEdge(edge)
self.addOutgoingEdge(edge)
class Graph(object):
"""
Holds a Graph.
"""
def __init__(self):
# member variables:
# redundant type keeping, "needed" for fast iterating over specific type
self.vertices = {} # {type, set(v1, v2, ...)}
self.edges = {} # {type, set(e1, e2, ...)}
"""
Holds a Graph.
"""
def __init__(self):
# member variables:
# redundant type keeping, "needed" for fast iterating over specific type
self.vertices = {} # {type, set(v1, v2, ...)}
self.edges = {} # {type, set(e1, e2, ...)}
def addCreateVertex(self, str_type):
"""
Creates a Vertex of str_type, stores it and returs it
(so that properties can be added to it).
"""
vertex = Vertex(str_type)
self.addVertex(vertex)
return vertex
def addCreateVertex(self, str_type):
"""
Creates a Vertex of str_type, stores it and returs it
(so that properties can be added to it).
"""
vertex = Vertex(str_type)
self.addVertex(vertex)
return vertex
def addVertex(self, vertex):
"""
Stores a Vertex into the Graph.
"""
if not isinstance(vertex, Vertex):
raise TypeError('addVertex expects a Vertex')
# add vertex, but it first creates a new set for the vertex type
# if the type does not exist in the dictionary
self.vertices.setdefault(vertex.type, set()).add(vertex)
def addVertex(self, vertex):
"""
Stores a Vertex into the Graph.
"""
if not isinstance(vertex, Vertex):
raise TypeError('addVertex expects a Vertex')
# add vertex, but it first creates a new set for the vertex type
# if the type does not exist in the dictionary
self.vertices.setdefault(vertex.type, set()).add(vertex)
def getVerticesOfType(self, str_type):
"""
Returns all vertices of a specific type,
Return [] if there are no vertices with the given type
"""
return self.vertices.get(str_type, [])
def getVerticesOfType(self, str_type):
"""
Returns all vertices of a specific type,
Return [] if there are no vertices with the given type
"""
return self.vertices.get(str_type, [])
def getEdgesOfType(self, str_type):
"""
Returns all edges of a specific type,
Return [] if there are no edges with the given type
"""
return self.edges.get(str_type, [])
def getEdgesOfType(self, str_type):
"""
Returns all edges of a specific type,
Return [] if there are no edges with the given type
"""
return self.edges.get(str_type, [])
def addCreateEdge(self, src, tgt, str_type):
"""
Creates edge of str_type from src to tgt, and returns it,
so that properties can be added to the edge.
"""
if not isinstance(src, Vertex):
raise TypeError('addCreateEdge: src is not a Vertex')
if not isinstance(tgt, Vertex):
raise TypeError('addCreateEdge: tgt is not a Vertex')
edge = Edge(src, tgt, str_type)
# link vertices connected to this edge
edge.src.addOutgoingEdge(edge)
edge.tgt.addIncomingEdge(edge)
self.addEdge(edge)
return edge
def addCreateEdge(self, src, tgt, str_type):
"""
Creates edge of str_type from src to tgt, and returns it,
so that properties can be added to the edge.
"""
if not isinstance(src, Vertex):
raise TypeError('addCreateEdge: src is not a Vertex')
if not isinstance(tgt, Vertex):
raise TypeError('addCreateEdge: tgt is not a Vertex')
edge = Edge(src, tgt, str_type)
# link vertices connected to this edge
edge.src.addOutgoingEdge(edge)
edge.tgt.addIncomingEdge(edge)
self.addEdge(edge)
return edge
def addEdge(self, edge):
"""
Stores an Edge into the Graph.
"""
if not isinstance(edge, Edge):
raise TypeError('addEdge expects an Edge')
# add edge, but it first creates a new set for the edge type
# if the type does not exist in the dictionary
self.edges.setdefault(edge.type, set()).add(edge)
def addEdge(self, edge):
"""
Stores an Edge into the Graph.
"""
if not isinstance(edge, Edge):
raise TypeError('addEdge expects an Edge')
# add edge, but it first creates a new set for the edge type
# if the type does not exist in the dictionary
self.edges.setdefault(edge.type, set()).add(edge)

View file

@ -1,8 +1,8 @@
# coding: utf-8
"""
Author: Sten Vercamman
Univeristy of Antwerp
Author: Sten Vercamman
Univeristy of Antwerp
Example code for paper: Efficient model transformations for novices
url: http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/projects/Sten.Vercammen
@ -21,24 +21,24 @@ at the workings behind various techniques for efficient pattern matching.
import graph as mg
def printGraph(fileName, graph, matched_v={}, matched_e={}):
if not isinstance(graph, mg.Graph):
raise TypeError('Can only print Graph Graphs')
if not isinstance(graph, mg.Graph):
raise TypeError('Can only print Graph Graphs')
with open(fileName, 'w') as f:
f.write('digraph randomGraph {\n\n')
for str_type, plan_vertices in graph.vertices.items():
for plan_vertex in plan_vertices:
vertex_str = str(id(plan_vertex)) + ' [label="'+str(str_type)+'"'
if plan_vertex in list(matched_v.values()):
vertex_str += ', style=dashed, style=filled]\n'
else:
vertex_str += ']\n'
f.write(vertex_str)
for out_edge in plan_vertex.outgoing_edges:
edge_str = str(id(plan_vertex)) + ' -> ' + str(id(out_edge.tgt)) + ' [label="'+str(out_edge.type)+'"'
if out_edge in list(matched_e.values()):
edge_str += ', style=dashed, penwidth = 4]\n'
else:
edge_str += ']\n'
f.write(edge_str)
f.write('\n}')
with open(fileName, 'w') as f:
f.write('digraph randomGraph {\n\n')
for str_type, plan_vertices in graph.vertices.items():
for plan_vertex in plan_vertices:
vertex_str = str(id(plan_vertex)) + ' [label="'+str(str_type)+'"'
if plan_vertex in list(matched_v.values()):
vertex_str += ', style=dashed, style=filled]\n'
else:
vertex_str += ']\n'
f.write(vertex_str)
for out_edge in plan_vertex.outgoing_edges:
edge_str = str(id(plan_vertex)) + ' -> ' + str(id(out_edge.tgt)) + ' [label="'+str(out_edge.type)+'"'
if out_edge in list(matched_e.values()):
edge_str += ', style=dashed, penwidth = 4]\n'
else:
edge_str += ']\n'
f.write(edge_str)
f.write('\n}')

View file

@ -1,8 +1,8 @@
# coding: utf-8
"""
Author: Sten Vercamman
Univeristy of Antwerp
Author: Sten Vercamman
Univeristy of Antwerp
Example code for paper: Efficient model transformations for novices
url: http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/projects/Sten.Vercammen
@ -18,8 +18,8 @@ It is intended as a guideline, even for novices, and provides an in-depth look
at the workings behind various techniques for efficient pattern matching.
"""
from generator import *
from patternMatching import *
from generator import *
from patternMatching import *
import graphToDot
@ -28,66 +28,66 @@ import random
debug = False
if __name__ == '__main__':
"""
The main function called when running from the command line.
"""
nr_of_vertices = 50
nr_of_diff_types_v = 2
nr_of_edges = 150
nr_of_diff_types_e = 2
"""
The main function called when running from the command line.
"""
nr_of_vertices = 50
nr_of_diff_types_v = 2
nr_of_edges = 150
nr_of_diff_types_e = 2
dv = [random.randint(0, nr_of_diff_types_v) for _ in range(nr_of_vertices)]
de = [random.randint(0, nr_of_diff_types_e) for _ in range(nr_of_edges)]
dc_inc = [random.randint(0, nr_of_vertices-1) for _ in range(nr_of_edges)]
dc_out = [random.randint(0, nr_of_vertices-1) for _ in range(nr_of_edges)]
dv = [random.randint(0, nr_of_diff_types_v) for _ in range(nr_of_vertices)]
de = [random.randint(0, nr_of_diff_types_e) for _ in range(nr_of_edges)]
dc_inc = [random.randint(0, nr_of_vertices-1) for _ in range(nr_of_edges)]
dc_out = [random.randint(0, nr_of_vertices-1) for _ in range(nr_of_edges)]
# override random graph by copy pasting output from terminal
# dv = [ 10,5,4,0,8,6,8,0,4,8,5,5,7,0,10,0,5,6,10,4,0,3,0,8,2,7,5,8,1,0,2,10,0,0,1,6,8,4,7,6,4,2,10,10,6,4,6,0,2,7 ]
# de = [ 8,10,8,1,6,7,4,3,5,2,0,0,9,6,0,3,8,3,2,7,2,3,10,8,10,8,10,2,5,5,10,6,7,5,1,2,1,2,2,3,7,7,2,1,7,2,9,10,8,1,9,4,1,3,1,1,8,2,2,9,10,9,1,9,4,10,10,10,9,3,5,3,6,6,9,1,2,6,3,2,4,10,9,6,5,6,2,4,3,2,4,10,6,2,8,8,0,5,1,7,3,4,3,8,7,3,0,8,3,3,8,5,10,5,9,3,1,10,3,2,6,3,10,0,5,10,9,10,0,1,4,7,10,3,1,9,1,2,3,7,4,3,7,8,8,4,5,10,1,4 ]
# dc_inc = [ 0,25,18,47,22,25,16,45,38,25,5,45,15,44,17,46,6,17,35,8,16,29,48,47,25,34,4,20,24,1,47,44,8,25,32,3,16,6,33,21,6,13,41,10,17,25,21,33,31,30,5,4,45,26,16,42,12,25,29,3,32,30,14,26,11,13,7,13,3,43,43,22,48,37,20,28,15,40,19,33,43,16,49,36,11,25,9,42,3,22,16,40,42,44,27,30,1,18,10,35,19,6,9,43,37,38,45,19,41,14,37,45,0,31,29,31,24,20,44,46,8,45,43,3,38,38,35,12,19,45,7,34,20,28,12,17,45,17,35,49,20,21,49,1,35,38,38,36,33,30 ]
# dc_out = [ 9,2,49,49,37,33,16,21,5,46,4,15,9,6,14,22,16,33,23,21,15,31,37,23,47,3,30,26,35,9,29,21,39,32,22,43,5,9,41,30,31,30,37,33,31,34,23,22,34,26,44,36,38,33,48,5,9,34,13,7,48,41,43,26,26,7,12,6,12,28,22,8,29,22,24,27,16,4,31,41,32,15,19,20,38,0,26,18,43,46,40,17,29,14,34,14,32,17,32,47,16,45,7,4,35,22,42,11,38,2,0,29,4,38,17,44,9,23,5,10,31,17,1,11,16,5,37,27,35,32,45,16,18,1,14,4,42,24,43,31,21,38,6,34,39,46,20,1,38,47 ]
# override random graph by copy pasting output from terminal
# dv = [ 10,5,4,0,8,6,8,0,4,8,5,5,7,0,10,0,5,6,10,4,0,3,0,8,2,7,5,8,1,0,2,10,0,0,1,6,8,4,7,6,4,2,10,10,6,4,6,0,2,7 ]
# de = [ 8,10,8,1,6,7,4,3,5,2,0,0,9,6,0,3,8,3,2,7,2,3,10,8,10,8,10,2,5,5,10,6,7,5,1,2,1,2,2,3,7,7,2,1,7,2,9,10,8,1,9,4,1,3,1,1,8,2,2,9,10,9,1,9,4,10,10,10,9,3,5,3,6,6,9,1,2,6,3,2,4,10,9,6,5,6,2,4,3,2,4,10,6,2,8,8,0,5,1,7,3,4,3,8,7,3,0,8,3,3,8,5,10,5,9,3,1,10,3,2,6,3,10,0,5,10,9,10,0,1,4,7,10,3,1,9,1,2,3,7,4,3,7,8,8,4,5,10,1,4 ]
# dc_inc = [ 0,25,18,47,22,25,16,45,38,25,5,45,15,44,17,46,6,17,35,8,16,29,48,47,25,34,4,20,24,1,47,44,8,25,32,3,16,6,33,21,6,13,41,10,17,25,21,33,31,30,5,4,45,26,16,42,12,25,29,3,32,30,14,26,11,13,7,13,3,43,43,22,48,37,20,28,15,40,19,33,43,16,49,36,11,25,9,42,3,22,16,40,42,44,27,30,1,18,10,35,19,6,9,43,37,38,45,19,41,14,37,45,0,31,29,31,24,20,44,46,8,45,43,3,38,38,35,12,19,45,7,34,20,28,12,17,45,17,35,49,20,21,49,1,35,38,38,36,33,30 ]
# dc_out = [ 9,2,49,49,37,33,16,21,5,46,4,15,9,6,14,22,16,33,23,21,15,31,37,23,47,3,30,26,35,9,29,21,39,32,22,43,5,9,41,30,31,30,37,33,31,34,23,22,34,26,44,36,38,33,48,5,9,34,13,7,48,41,43,26,26,7,12,6,12,28,22,8,29,22,24,27,16,4,31,41,32,15,19,20,38,0,26,18,43,46,40,17,29,14,34,14,32,17,32,47,16,45,7,4,35,22,42,11,38,2,0,29,4,38,17,44,9,23,5,10,31,17,1,11,16,5,37,27,35,32,45,16,18,1,14,4,42,24,43,31,21,38,6,34,39,46,20,1,38,47 ]
dv = [0, 1, 0, 1, 0]
de = [0, 0, 0]
dc_inc = [0, 2, 4]
dc_out = [1, 3, 3]
dv = [0, 1, 0, 1, 0]
de = [0, 0, 0]
dc_inc = [0, 2, 4]
dc_out = [1, 3, 3]
gg = GraphGenerator(dv, de, dc_inc, dc_out, debug)
gg = GraphGenerator(dv, de, dc_inc, dc_out, debug)
graph = gg.getRandomGraph()
graph = gg.getRandomGraph()
print(graph.vertices)
pattern = gg.getRandomPattern(3, 15, debug=debug)
print(pattern.vertices)
print(graph.vertices)
pattern = gg.getRandomPattern(3, 15, debug=debug)
print(pattern.vertices)
# override random pattern by copy pasting output from terminal to create
# pattern, paste it in the createConstantPattern function in the generator.py
# pattern = gg.createConstantPattern()
# override random pattern by copy pasting output from terminal to create
# pattern, paste it in the createConstantPattern function in the generator.py
# pattern = gg.createConstantPattern()
# generate here to know pattern and graph before searching it
graphToDot.printGraph('randomPattern.dot', pattern)
graphToDot.printGraph('randomGraph.dot', graph)
# generate here to know pattern and graph before searching it
graphToDot.printGraph('randomPattern.dot', pattern)
graphToDot.printGraph('randomGraph.dot', graph)
#PM = PatternMatching('naive')
#PM = PatternMatching('SP')
# PM = PatternMatching('Ullmann')
PM = PatternMatching('VF2')
matches = [m for m in PM.matchVF2(pattern, graph)]
print("found", len(matches), "matches:", matches)
#PM = PatternMatching('naive')
#PM = PatternMatching('SP')
# PM = PatternMatching('Ullmann')
PM = PatternMatching('VF2')
matches = [m for m in PM.matchVF2(pattern, graph)]
print("found", len(matches), "matches:", matches)
# regenerate graph, to show matched pattern
for i, (v,e) in enumerate(matches):
graphToDot.printGraph(f'randomGraph-{i}.dot', graph, v, e)
# regenerate graph, to show matched pattern
for i, (v,e) in enumerate(matches):
graphToDot.printGraph(f'randomGraph-{i}.dot', graph, v, e)
if debug:
print(len(v))
print('___')
print(v)
for key, value in v.items():
print(value.type)
print(len(e))
print(e)
print('___')
for key, value in e.items():
print(value.type)
if debug:
print(len(v))
print('___')
print(v)
for key, value in v.items():
print(value.type)
print(len(e))
print(e)
print('___')
for key, value in e.items():
print(value.type)

File diff suppressed because it is too large Load diff