(WIP) implementing CBD language... Meta-meta-model: Association inherits from Class. Matcher accepts pivot. Add generic graphviz renderer.

This commit is contained in:
Joeri Exelmans 2024-11-07 09:46:29 +01:00
parent a26ceef10f
commit 1eb8a84553
25 changed files with 542 additions and 170 deletions

View file

@ -76,10 +76,12 @@ class MatcherState:
self.boundary = None
@staticmethod
def make_initial(host, guest):
def make_initial(host, guest, pivot):
state = MatcherState()
state.h_unmatched_vtxs = host.vtxs
state.g_unmatched_vtxs = guest.vtxs
state.h_unmatched_vtxs = [vtx for vtx in host.vtxs if vtx not in pivot.values()]
state.g_unmatched_vtxs = [vtx for vtx in guest.vtxs if vtx not in pivot.keys()]
state.mapping_vtxs = pivot
state.r_mapping_vtxs = { v: k for k,v in state.mapping_vtxs.items() }
return state
# Grow the match set (creating a new copy)
@ -138,9 +140,9 @@ class MatcherVF2:
# print("number of guest connected components:", len(self.guest_component_to_vtxs))
def match(self):
def match(self, pivot={}):
yield from self._match(
state=MatcherState.make_initial(self.host, self.guest),
state=MatcherState.make_initial(self.host, self.guest, pivot),
already_visited=set())

View file

@ -1,3 +1,4 @@
from api.cd import CDAPI
from state.base import State
from uuid import UUID
from services.bottom.V0 import Bottom
@ -87,6 +88,8 @@ def model_to_graph(state: State, model: UUID, metamodel: UUID, prefix=""):
modelrefs = {}
# constraints = {}
names = {}
def to_vtx(el, name):
# print("name:", name)
if bottom.is_edge(el):
@ -101,7 +104,9 @@ def model_to_graph(state: State, model: UUID, metamodel: UUID, prefix=""):
# except:
# pass
mvs_edges.append(el)
return MVSEdge(el, name)
edge = MVSEdge(el, name)
names[name] = edge
return edge
# If the value of the el is a ModelRef (only way to detect this is to match a regex - not very clean), then extract it. We'll create a link to the referred model later.
value = bottom.read_value(el)
if isinstance(value, str):
@ -109,13 +114,15 @@ def model_to_graph(state: State, model: UUID, metamodel: UUID, prefix=""):
# side-effect
modelrefs[el] = (UUID(value), name)
return MVSNode(IS_MODELREF, el, name)
return MVSNode(value, el, name)
node = MVSNode(value, el, name)
names[name] = node
return node
# MVS-Nodes become vertices
# Objects and Links become vertices
uuid_to_vtx = { node: to_vtx(node, prefix+key) for key in bottom.read_keys(model) for node in bottom.read_outgoing_elements(model, key) }
graph.vtxs = [ vtx for vtx in uuid_to_vtx.values() ]
# For every MSV-Edge, two edges are created (for src and tgt)
# For every Link, two edges are created (for src and tgt)
for mvs_edge in mvs_edges:
mvs_src = bottom.read_edge_source(mvs_edge)
if mvs_src in uuid_to_vtx:
@ -194,10 +201,13 @@ def model_to_graph(state: State, model: UUID, metamodel: UUID, prefix=""):
for link_name, link_node in objects.items():
add_types(link_node)
return graph
return names, graph
def match_od(state, host_m, host_mm, pattern_m, pattern_mm):
def match_od(state, host_m, host_mm, pattern_m, pattern_mm, pivot={}):
# compute subtype relations and such:
cdapi = CDAPI(state, host_mm)
# Function object for pattern matching. Decides whether to match host and guest vertices, where guest is a RAMified instance (e.g., the attributes are all strings with Python expressions), and the host is an instance (=object diagram) of the original model (=class diagram)
class RAMCompare:
@ -208,33 +218,23 @@ def match_od(state, host_m, host_mm, pattern_m, pattern_mm):
type_model_id = bottom.state.read_dict(bottom.state.read_root(), "SCD")
self.scd_model = UUID(bottom.state.read_value(type_model_id))
def is_subtype_of(self, supposed_subtype: UUID, supposed_supertype: UUID):
if supposed_subtype == supposed_supertype:
# reflexive:
return True
inheritance_node, = self.bottom.read_outgoing_elements(self.scd_model, "Inheritance")
for outgoing in self.bottom.read_outgoing_edges(supposed_subtype):
if inheritance_node in self.bottom.read_outgoing_elements(outgoing, "Morphism"):
# 'outgoing' is an inheritance link
supertype = self.bottom.read_edge_target(outgoing)
if supertype != supposed_subtype:
if self.is_subtype_of(supertype, supposed_supertype):
return True
return False
def match_types(self, g_vtx_type, h_vtx_type):
# types only match with their supertypes
# we assume that 'RAMifies'-traceability links have been created between guest and host types
try:
g_vtx_original_type = ramify.get_original_type(self.bottom, g_vtx_type)
g_vtx_unramified_type = ramify.get_original_type(self.bottom, g_vtx_type)
except:
return False
return self.is_subtype_of(h_vtx_type, g_vtx_original_type)
try:
host_type_name = cdapi.type_model_names[h_vtx_type]
guest_type_name_unramified = cdapi.type_model_names[g_vtx_unramified_type]
except KeyError:
return False
return cdapi.is_subtype(
super_type_name=guest_type_name_unramified,
sub_type_name=host_type_name)
# Memoizing the result of comparison gives a huge performance boost!
# Especially `is_subtype_of` is very slow, and will be performed many times over on the same pair of nodes during the matching process.
@ -299,11 +299,18 @@ def match_od(state, host_m, host_mm, pattern_m, pattern_mm):
return False
# Convert to format understood by matching algorithm
host = model_to_graph(state, host_m, host_mm)
guest = model_to_graph(state, pattern_m, pattern_mm)
h_names, host = model_to_graph(state, host_m, host_mm)
g_names, guest = model_to_graph(state, pattern_m, pattern_mm)
graph_pivot = {
g_names[guest_name] : h_names[host_name]
for guest_name, host_name in pivot.items()
if guest_name in g_names
}
matcher = MatcherVF2(host, guest, RAMCompare(Bottom(state), OD(host_mm, host_m, state)))
for m in matcher.match():
for m in matcher.match(graph_pivot):
# print("\nMATCH:\n", m)
# Convert mapping
name_mapping = {}