mtl-aas/stl/boolean_eval.py
2017-04-23 12:42:57 -07:00

112 lines
2.5 KiB
Python

# TODO: figure out how to deduplicate this with robustness
# - Abstract as working on distributive lattice
from functools import singledispatch
import operator as op
import numpy as np
import funcy as fn
from lenses import lens
import stl.ast
oo = float('inf')
@singledispatch
def pointwise_sat(stl):
raise NotImplementedError
@pointwise_sat.register(stl.Or)
def _(stl):
fs = [pointwise_sat(arg) for arg in stl.args]
return lambda x, t: any(f(x, t) for f in fs)
@pointwise_sat.register(stl.And)
def _(stl):
fs = [pointwise_sat(arg) for arg in stl.args]
return lambda x, t: all(f(x, t) for f in fs)
def get_times(x, tau, lo=None, hi=None):
if lo is None or lo is -oo:
lo = min(v.first()[0] for v in x.values())
if hi is None or hi is oo:
hi = max(v.last()[0] for v in x.values())
if lo > hi:
return []
elif hi == lo:
return [lo]
all_times = fn.cat(v.slice(lo, hi).items() for v in x.values())
return sorted(set(fn.pluck(0, all_times)))
@pointwise_sat.register(stl.Until)
def _(stl):
def _until(x, t):
f1, f2 = pointwise_sat(stl.arg1), pointwise_sat(stl.arg2)
for tau in get_times(x, t):
if not f1(x, tau):
return f2(x, tau)
return False
return _until
def eval_unary_temporal_op(phi, always=True):
fold = all if always else any
lo, hi = phi.interval
if lo > hi:
retval = True if always else False
return lambda x, t: retval
if hi == lo:
return lambda x, t: f(x, t)
f = pointwise_sat(phi.arg)
return lambda x, t: fold(f(x, tau) for tau in get_times(x, t, lo, hi))
@pointwise_sat.register(stl.F)
def _(phi):
return eval_unary_temporal_op(phi, always=False)
@pointwise_sat.register(stl.G)
def _(phi):
return eval_unary_temporal_op(phi, always=True)
@pointwise_sat.register(stl.Neg)
def _(stl):
f = pointwise_sat(stl.arg)
return lambda x, t: not f(x, t)
op_lookup = {
">": op.gt,
">=": op.ge,
"<": op.lt,
"<=": op.le,
"=": op.eq,
}
@pointwise_sat.register(stl.AtomicPred)
def _(stl):
return lambda x, t: x[str(stl.id)][t]
@pointwise_sat.register(stl.LinEq)
def _(stl):
op = op_lookup[stl.op]
return lambda x, t: op(eval_terms(stl, x, t), stl.const)
def eval_terms(lineq, x, t):
psi = lens(lineq).terms.each_().modify(eval_term(x, t))
return sum(psi.terms)
def eval_term(x, t):
# TODO(lift interpolation much higher)
return lambda term: term.coeff*x[term.id.name][t]