138 lines
3 KiB
Python
138 lines
3 KiB
Python
# TODO: figure out how to deduplicate this with robustness
|
|
# - Abstract as working on distributive lattice
|
|
|
|
import operator as op
|
|
from functools import singledispatch
|
|
|
|
import funcy as fn
|
|
|
|
import stl
|
|
import stl.ast
|
|
from lenses import lens
|
|
|
|
oo = float('inf')
|
|
|
|
|
|
def pointwise_sat(phi):
|
|
ap_names = [z.id.name for z in stl.utils.AP_lens(phi).Each().collect()]
|
|
|
|
def _eval_stl(x, t):
|
|
evaluated = stl.utils.eval_lineqs(phi, x)
|
|
evaluated.update(fn.project(x, ap_names))
|
|
return eval_stl(phi)(evaluated, t)
|
|
|
|
return _eval_stl
|
|
|
|
|
|
@singledispatch
|
|
def eval_stl(stl):
|
|
raise NotImplementedError
|
|
|
|
|
|
@eval_stl.register(stl.Or)
|
|
def eval_stl_or(phi):
|
|
fs = [eval_stl(arg) for arg in phi.args]
|
|
return lambda x, t: any(f(x, t) for f in fs)
|
|
|
|
|
|
@eval_stl.register(stl.And)
|
|
def eval_stl_and(stl):
|
|
fs = [eval_stl(arg) for arg in stl.args]
|
|
return lambda x, t: all(f(x, t) for f in fs)
|
|
|
|
|
|
def get_times(x, tau, lo=None, hi=None):
|
|
domain = fn.first(x.values()).domain
|
|
if lo is None or lo is -oo:
|
|
lo = domain.start()
|
|
if hi is None or hi is oo:
|
|
hi = domain.end()
|
|
end = min(v.domain.end() for v in x.values())
|
|
hi = hi + tau if hi + tau <= end else end
|
|
lo = lo + tau if lo + tau <= end else end
|
|
|
|
if lo > hi:
|
|
return []
|
|
elif hi == lo:
|
|
return [lo]
|
|
|
|
all_times = fn.cat(v.slice(lo, hi).items() for v in x.values())
|
|
return sorted(set(fn.pluck(0, all_times)))
|
|
|
|
|
|
@eval_stl.register(stl.Until)
|
|
def eval_stl_until(stl):
|
|
def _until(x, t):
|
|
f1, f2 = eval_stl(stl.arg1), eval_stl(stl.arg2)
|
|
for tau in get_times(x, t):
|
|
if not f1(x, tau):
|
|
return f2(x, tau)
|
|
return False
|
|
|
|
return _until
|
|
|
|
|
|
def eval_unary_temporal_op(phi, always=True):
|
|
fold = all if always else any
|
|
lo, hi = phi.interval
|
|
if lo > hi:
|
|
retval = True if always else False
|
|
return lambda x, t: retval
|
|
f = eval_stl(phi.arg)
|
|
if hi == lo:
|
|
return lambda x, t: f(x, t)
|
|
return lambda x, t: fold(f(x, tau) for tau in get_times(x, t, lo, hi))
|
|
|
|
|
|
@eval_stl.register(stl.F)
|
|
def eval_stl_f(phi):
|
|
return eval_unary_temporal_op(phi, always=False)
|
|
|
|
|
|
@eval_stl.register(stl.G)
|
|
def eval_stl_g(phi):
|
|
return eval_unary_temporal_op(phi, always=True)
|
|
|
|
|
|
@eval_stl.register(stl.Neg)
|
|
def eval_stl_neg(stl):
|
|
f = eval_stl(stl.arg)
|
|
return lambda x, t: not f(x, t)
|
|
|
|
|
|
op_lookup = {
|
|
">": op.gt,
|
|
">=": op.ge,
|
|
"<": op.lt,
|
|
"<=": op.le,
|
|
"=": op.eq,
|
|
}
|
|
|
|
|
|
@eval_stl.register(stl.AtomicPred)
|
|
def eval_stl_ap(stl):
|
|
return lambda x, t: x[str(stl.id)][t]
|
|
|
|
|
|
@eval_stl.register(type(stl.TOP))
|
|
def eval_stl_top(_):
|
|
return lambda *_: True
|
|
|
|
|
|
@eval_stl.register(type(stl.BOT))
|
|
def eval_stl_bot(_):
|
|
return lambda *_: False
|
|
|
|
|
|
@eval_stl.register(stl.LinEq)
|
|
def eval_stl_lineq(lineq):
|
|
return lambda x, t: x[lineq][t]
|
|
|
|
|
|
def eval_terms(lineq, x, t):
|
|
terms = lens(lineq).terms.each_().get_all()
|
|
return sum(eval_term(term, x, t) for term in terms)
|
|
|
|
|
|
def eval_term(term, x, t):
|
|
return float(term.coeff) * x[term.id][t]
|