44 lines
1.1 KiB
Python
44 lines
1.1 KiB
Python
from discrete_signals import signal
|
|
|
|
import mtl
|
|
|
|
|
|
def test_eval_regression_smoke1():
|
|
"""From issue #215"""
|
|
d2 = {
|
|
'a': [
|
|
(0, True), (1, True), (3, True), (4, True), (5, False), (6, True)
|
|
],
|
|
'b': [(0, False), (3, True)],
|
|
}
|
|
f2 = mtl.parse('(a U[0,3] b)')
|
|
f2(d2, quantitative=False)
|
|
|
|
|
|
def test_eval_regression_next_neg():
|
|
"""From issue #219"""
|
|
d = {"a": [(0, False), (1, True)]}
|
|
f = mtl.parse("(a & (X (~a)))")
|
|
v = f(d, quantitative=False, dt=1, time=None)
|
|
assert not f(d, quantitative=False, dt=1)
|
|
assert min(t for t, _ in v) >= 0
|
|
|
|
|
|
def test_eval_with_signal():
|
|
spec = mtl.parse('F(above_three)')
|
|
|
|
raw_data = signal([(0, 1), (1, 2), (2, 3)], start=0, end=10, tag='a')
|
|
processed = raw_data.map(lambda val: val['a'] > 3, tag="above_three")
|
|
|
|
assert not spec(processed, quantitative=False)
|
|
assert spec(processed, quantitative=True) == 0
|
|
|
|
|
|
def test_eval_regression_until_start():
|
|
"""From issue #221"""
|
|
x = {
|
|
"ap1": [(0, True), (0.1, True), (0.2, False)],
|
|
}
|
|
|
|
phi = (mtl.parse("(X TRUE W X TRUE)"))
|
|
phi(x, 0, quantitative=False)
|