mtl-aas/mtl/boolean_eval.py
2018-09-06 11:09:01 -07:00

187 lines
3.8 KiB
Python

# TODO: figure out how to deduplicate this with robustness
# - Abstract as working on distributive lattice
import operator as op
from functools import singledispatch
import funcy as fn
import traces
import mtl
import mtl.ast
from mtl.utils import const_trace, andf, orf
TRUE_TRACE = const_trace(True)
FALSE_TRACE = const_trace(False)
def negate_trace(x):
out = x.operation(TRUE_TRACE, op.xor)
out.domain = x.domain
return out
def pointwise_sat(phi, dt=0.1):
ap_names = [z.id for z in phi.atomic_predicates]
def _eval_mtl(x, t=0):
evaluated = fn.project(x, ap_names)
return bool(eval_mtl(phi, dt)(evaluated)[t])
return _eval_mtl
@singledispatch
def eval_mtl(phi, dt):
raise NotImplementedError
def or_traces(xs):
out = orf(*xs)
out.domain = xs[0].domain
return out
@eval_mtl.register(mtl.Or)
def eval_mtl_or(phi, dt):
fs = [eval_mtl(arg, dt) for arg in phi.args]
def _eval(x):
out = or_traces([f(x) for f in fs])
out.compact()
return out
return _eval
def and_traces(xs):
out = andf(*xs)
out.domain = xs[0].domain
return out
@eval_mtl.register(mtl.And)
def eval_mtl_and(phi, dt):
fs = [eval_mtl(arg, dt) for arg in phi.args]
def _eval(x):
out = and_traces([f(x) for f in fs])
out.compact()
return out
return _eval
def apply_until(y):
periods = list(y.iterperiods())
phi2_next = False
for t, _, (phi1, phi2) in periods[::-1]:
yield (t, phi2 or (phi1 and phi2_next))
phi2_next = phi2
@eval_mtl.register(mtl.Until)
def eval_mtl_until(phi, dt):
f1, f2 = eval_mtl(phi.arg1, dt), eval_mtl(phi.arg2, dt)
def _eval(x):
y1, y2 = f1(x), f2(x)
y = y1.operation(y2, lambda a, b: (a, b))
out = traces.TimeSeries(apply_until(y), domain=y1.domain)
out.compact()
return out
return _eval
@eval_mtl.register(mtl.F)
def eval_mtl_f(phi, dt):
phi = ~mtl.G(phi.interval, ~phi.arg)
return eval_mtl(phi, dt)
@eval_mtl.register(mtl.G)
def eval_mtl_g(phi, dt):
f = eval_mtl(phi.arg, dt)
a, b = phi.interval
if b < a:
return lambda _: TRUE_TRACE
def process_intervals(x):
# Need to add last interval
intervals = fn.chain(x.iterintervals(), [(
x.last(),
(float('inf'), None),
)])
for (start, val), (end, val2) in intervals:
start2, end2 = start - b, end + a
if end2 > start2:
yield (start2, val)
if b == float('inf'):
def _eval(x):
y = f(x)
val = len(y.slice(a, b)) == 1 and y[a]
return traces.TimeSeries(
[(y.domain.start(), val)], domain=y.domain)
else:
def _eval(x):
y = f(x)
if len(y) <= 1:
return y
out = traces.TimeSeries(process_intervals(y)).slice(
y.domain.start(), y.domain.end())
out.compact()
return out
return _eval
@eval_mtl.register(mtl.Neg)
def eval_mtl_neg(phi, dt):
f = eval_mtl(phi.arg, dt)
def _eval(x):
out = negate_trace(f(x))
out.compact()
return out
return _eval
@eval_mtl.register(mtl.ast.Next)
def eval_mtl_next(phi, dt):
f = eval_mtl(phi.arg, dt)
def _eval(x):
y = f(x)
out = traces.TimeSeries(((t - dt, v) for t, v in y))
out = out.slice(y.domain.start(), y.domain.end())
out.compact()
return out
return _eval
@eval_mtl.register(mtl.AtomicPred)
def eval_mtl_ap(phi, _):
def _eval(x):
out = x[str(phi.id)]
out.compact()
return out
return _eval
@eval_mtl.register(type(mtl.TOP))
def eval_mtl_top(_, _1):
return lambda *_: TRUE_TRACE
@eval_mtl.register(type(mtl.BOT))
def eval_mtl_bot(_, _1):
return lambda *_: FALSE_TRACE