Metric Temporal Logic (MTL) as-a-service
| assets | ||
| mtl | ||
| .gitignore | ||
| .travis.yml | ||
| LICENSE | ||
| README.md | ||
| requirements.txt | ||
| setup.py | ||
About
Python library for working with Metric Temporal Logic (MTL). Metric Temporal Logic is an extension of Linear Temporal Logic (LTL) for specifying properties over time series (See Alur). Some practical examples are given in the usage.
Installation
$ pip install metric-temporal-logic
Usage
To begin, we import mtl.
import mtl
Propositional logic (using parse api)
# - Lowercase strings denote atomic predicates.
phi0 = mtl.parse('atomicpred')
# - Binary operators need to be surrounded by parens.
phi1 = mtl.parse('((a & b & c) | d | e)')
phi2 = mtl.parse('(a -> b) & (~a -> c)')
phi3 = mtl.parse('(a -> b -> c)')
phi4 = mtl.parse('(a <-> b <-> c)')
phi5 = mtl.parse('(x ^ y ^ z)')
# - Unary operators (negation)
phi6 = mtl.parse('~a')
phi7 = mtl.parse('~(a)')
Propositional logic (using python syntax)
a, b = mtl.parse('a'), mtl.parse('b')
phi0 = ~a
phi1 = a & b
phi2 = a | b
# TODO: add
phi3 = a ^ b
phi4 = a.iff(b)
phi5 = a.implies(b)
Modal Logic (parser api)
# Eventually `x` will hold.
phi1 = mtl.parse('F x')
# `x & y` will always hold.
phi2 = mtl.parse('G(x & y)')
# `x` holds until `y` holds.
# Note that since `U` is binary, it requires parens.
phi3 = mtl.parse('(x U y)')
# Whenever `x` holds, then `y` holds in the next two time units.
phi4 = mtl.parse('G(x -> F[0, 2] y)')
# We also support timed until.
phi5 = mtl.parse('(a U[0, 2] b)')
# Finally, if time is discretized, we also support the next operator.
# Thus, LTL can also be modeled.
# `a` holds in two time steps.
phi6 = mtl.parse('XX a')