mtl-aas/stl/utils.py
2017-09-25 23:05:18 -07:00

203 lines
5.7 KiB
Python

from typing import List, Type, Dict, Mapping, T
from collections import deque
import operator as op
from functools import reduce
from lenses import lens, Lens
import funcy as fn
import sympy
import traces
import stl.ast
from stl.ast import (LinEq, And, Or, NaryOpSTL, F, G, Interval, Neg,
AtomicPred)
from stl.types import STL, STL_Generator, MTL
def walk(phi:STL) -> STL_Generator:
"""DSF walk of the AST."""
pop = deque.pop
children = deque([phi])
while len(children) > 0:
node = pop(children)
yield node
children.extend(node.children())
def vars_in_phi(phi):
focus = stl.terms_lens(phi)
return set(focus.tuple_(lens().id, lens().time).get_all())
def type_pred(*args:List[Type]) -> Mapping[Type, bool]:
ast_types = set(args)
return lambda x: type(x) in ast_types
def _child_lens(psi:STL, focus:Lens) -> STL_Generator:
if psi is None:
return
elif psi is stl.TOP or psi is stl.BOT:
return
elif isinstance(psi, stl.ast.Until):
yield from [focus.arg1, focus.arg2]
elif isinstance(psi, NaryOpSTL):
for j, _ in enumerate(psi.args):
yield focus.args[j]
else:
yield focus.arg
def ast_lens(phi:STL, bind:bool=True, *,
pred:Mapping[T, bool], focus_lens:Lens=None) -> Lens:
if focus_lens is None:
focus_lens = lambda x: [lens()]
tls = list(fn.flatten(_ast_lens(phi, pred=pred, focus_lens=focus_lens)))
tl = lens().tuple_(*tls).each_()
return tl.bind(phi) if bind else tl
def _ast_lens(phi, *, pred, focus=lens(), focus_lens):
psi = focus.get(state=phi)
ret_lens = [focus.add_lens(l) for l in focus_lens(psi)] if pred(psi) else []
if isinstance(psi, (LinEq, stl.ast.AtomicPred)):
return ret_lens
child_lenses = list(_child_lens(psi, focus=focus))
ret_lens += [_ast_lens(phi, pred=pred, focus=cl, focus_lens=focus_lens)
for cl in child_lenses]
return ret_lens
lineq_lens = fn.partial(ast_lens, pred=type_pred(LinEq))
AP_lens = fn.partial(ast_lens, pred=type_pred(stl.ast.AtomicPred))
and_or_lens = fn.partial(ast_lens, pred=type_pred(And, Or))
def terms_lens(phi:STL, bind:bool=True) -> Lens:
return lineq_lens(phi, bind).terms.each_()
def param_lens(phi:STL) -> Lens:
is_sym = lambda x: isinstance(x, sympy.Symbol)
def focus_lens(leaf):
return [lens().const] if isinstance(leaf, LinEq) else [lens().interval[0], lens().interval[1]]
return ast_lens(phi, pred=type_pred(LinEq, F, G),
focus_lens=focus_lens).filter_(is_sym)
def set_params(stl_or_lens, val) -> STL:
l = stl_or_lens if isinstance(stl_or_lens, Lens) else param_lens(stl_or_lens)
return l.modify(lambda x: float(val.get(x, val.get(str(x), x))))
def f_neg_or_canonical_form(phi:STL) -> STL:
if isinstance(phi, LinEq):
return phi
children = [f_neg_or_canonical_form(s) for s in phi.children()]
if isinstance(phi, (And, G)):
children = [Neg(s) for s in children]
children = tuple(children)
if isinstance(phi, Or):
return Or(children)
elif isinstance(phi, And):
return Neg(Or(children))
elif isinstance(phi, Neg):
return Neg(children[0])
elif isinstance(phi, F):
return F(phi.interval, children[0])
elif isinstance(phi, G):
return Neg(F(phi.interval, children[0]))
else:
raise NotImplementedError
def to_mtl(phi:STL) -> MTL:
focus = lineq_lens(phi)
to_ap = lambda i: stl.ast.AtomicPred("AP{}".format(i))
ap_map = {to_ap(i): leq for i, leq in enumerate(focus.get_all())}
lineq_map = {v:k for k,v in ap_map.items()}
return focus.modify(lineq_map.get), ap_map
def from_mtl(phi:MTL, ap_map:Dict[AtomicPred, LinEq]) -> STL:
focus = AP_lens(phi)
return focus.modify(ap_map.get)
def _lineq_lipschitz(lineq):
return sum(map(abs, lens(lineq).terms.each_().coeff.get_all()))
def linear_stl_lipschitz(phi):
"""Infinity norm lipschitz bound of linear inequality predicate."""
return float(max(map(_lineq_lipschitz, lineq_lens(phi).get_all())))
def inline_context(phi, context):
phi2 = None
update = lambda ap: context.get(ap, ap)
while phi2 != phi:
phi2, phi = phi, AP_lens(phi).modify(update)
# TODO: this is hack to flatten the AST. Fix!
return stl.parse(str(phi))
op_lookup = {
">": op.gt,
">=": op.ge,
"<": op.lt,
"<=": op.le,
"=": op.eq,
}
def get_times(x):
times = set.union(*({t for t, _ in v.items()} for v in x.values()))
return sorted(times)
def eval_lineq(lineq, x, times=None, compact=True):
if times is None:
times = get_times(x)
def eval_term(term, t):
return float(term.coeff)*x[term.id.name][t]
output = traces.TimeSeries(domain=traces.Domain(times[0], times[-1]))
terms = lens(lineq).terms.each_().get_all()
for t in times:
lhs = sum(eval_term(term, t) for term in terms)
output[t] = op_lookup[lineq.op](lhs, lineq.const)
if compact:
output.compact()
return output
def eval_lineqs(phi, x, times=None):
if times is None:
times = get_times(x)
lineqs = set(lineq_lens(phi).get_all())
return {lineq: eval_lineq(lineq, x, times=times) for lineq in lineqs}
# EDSL
def alw(phi, *, lo, hi):
return G(Interval(lo, hi), phi)
def env(phi, *, lo, hi):
return F(Interval(lo, hi), phi)
def until(phi1, phi2, *, lo, hi):
return stl.ast.Until(Interval(lo, hi), phi1, phi2)
def andf(*args):
return reduce(op.and_, args) if args else stl.TOP
def orf(*args):
return reduce(op.or_, args) if args else stl.TOP
def implies(x, y):
return ~x | y
def xor(x, y):
return (x | y) & ~(x & y)
def iff(x, y):
return (x & y) | (~x & ~y)