mtl-aas/stl/utils.py
2018-05-04 19:50:04 -07:00

226 lines
5.6 KiB
Python

import operator as op
from functools import reduce, wraps
from math import isfinite
import traces
import numpy as np
from lenses import bind
import stl.ast
from stl.ast import (And, F, G, Interval, LinEq, Neg, Or, Next, Until,
AtomicPred, _Top, _Bot)
from stl.types import STL
oo = float('inf')
def f_neg_or_canonical_form(phi: STL) -> STL:
if isinstance(phi, (LinEq, AtomicPred, _Top, _Bot)):
return phi
children = [f_neg_or_canonical_form(s) for s in phi.children]
if isinstance(phi, (And, G)):
children = [Neg(s) for s in children]
children = tuple(sorted(children, key=str))
if isinstance(phi, Or):
return Or(children)
elif isinstance(phi, And):
return Neg(Or(children))
elif isinstance(phi, Neg):
return Neg(*children)
elif isinstance(phi, Next):
return Next(*children)
elif isinstance(phi, Until):
return Until(*children)
elif isinstance(phi, F):
return F(phi.interval, *children)
elif isinstance(phi, G):
return Neg(F(phi.interval, *children))
else:
raise NotImplementedError
def _lineq_lipschitz(lineq):
return sum(map(abs, bind(lineq).terms.Each().coeff.collect()))
def linear_stl_lipschitz(phi):
"""Infinity norm lipschitz bound of linear inequality predicate."""
if any(isinstance(psi, (AtomicPred, _Top, _Bot)) for psi in phi.walk()):
return float('inf')
return float(max(map(_lineq_lipschitz, phi.lineqs), default=float('inf')))
op_lookup = {
">": op.gt,
">=": op.ge,
"<": op.lt,
"<=": op.le,
"=": op.eq,
}
def const_trace(x, start=0):
return traces.TimeSeries([(start, x)], domain=traces.Domain(start, oo))
def eval_lineq(lineq, x, domain, compact=True):
lhs = sum(const_trace(term.coeff) * x[term.id] for term in lineq.terms)
compare = op_lookup.get(lineq.op)
output = lhs.operation(const_trace(lineq.const), compare)
output.domain = domain
if compact:
output.compact()
return output
def eval_lineqs(phi, x):
lineqs = phi.lineqs
start = max(y.domain.start() for y in x.values())
end = min(y.domain.end() for y in x.values())
domain = traces.Domain(start, end)
return {lineq: eval_lineq(lineq, x, domain) for lineq in lineqs}
def implicit_validity_domain(phi, trace):
params = {ap.name for ap in phi.params}
order = tuple(params)
def vec_to_dict(theta):
return {k: v for k, v in zip(order, theta)}
def oracle(theta):
return stl.pointwise_sat(phi.set_params(vec_to_dict(theta)))(trace, 0)
return oracle, order
def require_discretizable(func):
@wraps(func)
def _func(phi, dt, *args, **kwargs):
if 'horizon' not in kwargs:
assert is_discretizable(phi, dt)
return func(phi, dt, *args, **kwargs)
return _func
def scope(phi, dt, *, _t=0, horizon=oo):
if isinstance(phi, Next):
_t += dt
elif isinstance(phi, (G, F)):
_t += phi.interval.upper
elif isinstance(phi, Until):
_t += float('inf')
_scope = max((scope(c, dt, _t=_t) for c in phi.children), default=_t)
return min(_scope, horizon)
# Code to discretize a bounded STL formula
@require_discretizable
def discretize(phi, dt, distribute=False, *, horizon=None):
if horizon is None:
horizon = oo
phi = _discretize(phi, dt, horizon)
return _distribute_next(phi) if distribute else phi
def _discretize(phi, dt, horizon):
if isinstance(phi, (LinEq, AtomicPred, _Top, _Bot)):
return phi
if not isinstance(phi, (F, G, Until)):
children = tuple(_discretize(arg, dt, horizon) for arg in phi.children)
if isinstance(phi, (And, Or)):
return bind(phi).args.set(children)
elif isinstance(phi, (Neg, Next)):
return bind(phi).arg.set(children[0])
raise NotImplementedError
elif isinstance(phi, Until):
raise NotImplementedError
# Only remaining cases are G and F
upper = min(phi.interval.upper, horizon)
l, u = round(phi.interval.lower / dt), round(upper / dt)
psis = (next(_discretize(phi.arg, dt, horizon - i), i)
for i in range(l, u + 1))
opf = andf if isinstance(phi, G) else orf
return opf(*psis)
def _interval_discretizable(itvl, dt):
l, u = itvl.lower / dt, itvl.upper / dt
if not (isfinite(l) and isfinite(u)):
return False
return np.isclose(l, round(l)) and np.isclose(u, round(u))
def _distribute_next(phi, i=0):
if isinstance(phi, (LinEq, AtomicPred)):
return stl.utils.next(phi, i=i)
elif isinstance(phi, Next):
return _distribute_next(phi.arg, i=i+1)
children = tuple(_distribute_next(c, i) for c in phi.children)
if isinstance(phi, (And, Or)):
return bind(phi).args.set(children)
elif isinstance(phi, (Neg, Next)):
return bind(phi).arg.set(children[0])
def is_discretizable(phi, dt):
if any(c for c in phi.walk() if isinstance(c, Until)):
return False
return all(
_interval_discretizable(c.interval, dt) for c in phi.walk()
if isinstance(c, (F, G)))
# EDSL
def alw(phi, *, lo=0, hi=float('inf')):
return G(Interval(lo, hi), phi)
def env(phi, *, lo=0, hi=float('inf')):
return F(Interval(lo, hi), phi)
def andf(*args):
return reduce(op.and_, args) if args else stl.TOP
def orf(*args):
return reduce(op.or_, args) if args else stl.TOP
def implies(x, y):
return ~x | y
def xor(x, y):
return (x | y) & ~(x & y)
def iff(x, y):
return (x & y) | (~x & ~y)
def next(phi, i=1):
return phi >> i
def timed_until(phi, psi, lo, hi):
return env(psi, lo=lo, hi=hi) & alw(stl.ast.Until(phi, psi), lo=0, hi=lo)