| assets | ||
| mtl | ||
| .gitignore | ||
| .travis.yml | ||
| LICENSE | ||
| README.md | ||
| requirements.txt | ||
| setup.py | ||
About
Python library for working with Metric Temporal Logic (MTL). Metric Temporal Logic is an extension of Linear Temporal Logic (LTL) for specifying properties over time series (See Alur). Some practical examples are given in the usage.
Installation
$ pip install metric-temporal-logic
Usage
To begin, we import mtl.
import mtl
There are two APIs for interacting with the mtl module. Namely, one can specify the MTL expression using:
- python operators.
- string + the parse api.
We begin with the Python Operator API:
Python Operator API
Propositional logic (using python syntax)
a, b = mtl.parse('a'), mtl.parse('b')
phi0 = ~a
phi1 = a & b
phi2 = a | b
# TODO: add
phi3 = a ^ b
phi4 = a.iff(b)
phi5 = a.implies(b)
Modal Logic (using python syntax)
a, b = mtl.parse('a'), mtl.parse('b')
# Eventually `a` will hold.
phi1 = a.eventually()
# `a & b` will always hold.
phi2 = (a & b).always()
# `a` until `b`
phi3 = a.until()
# `a` weak until `b`
phi4 = a.weak_until(b)
# Whenever `a` holds, then `b` holds in the next two time units.
phi5 = (a.implies(b.eventually(lo=0, hi=2))).always()
# We also support timed until.
phi6 = a.timed_until(b, lo=0, hi=2)
# `a` holds in two time steps.
phi7 = a >> 2
String based API
Propositional logic (parse api)
# - Lowercase strings denote atomic predicates.
phi0 = mtl.parse('atomicpred')
# - infix operators need to be surrounded by parens.
phi1 = mtl.parse('((a & b & c) | d | e)')
phi2 = mtl.parse('(a -> b) & (~a -> c)')
phi3 = mtl.parse('(a -> b -> c)')
phi4 = mtl.parse('(a <-> b <-> c)')
phi5 = mtl.parse('(x ^ y ^ z)')
# - Unary operators (negation)
phi6 = mtl.parse('~a')
phi7 = mtl.parse('~(a)')
Modal Logic (parser api)
# Eventually `x` will hold.
phi1 = mtl.parse('F x')
# `x & y` will always hold.
phi2 = mtl.parse('G(x & y)')
# `x` holds until `y` holds.
# Note that since `U` is binary, it requires parens.
phi3 = mtl.parse('(x U y)')
# Weak until (`y` never has to hold).
phi4 = mtl.parse('(x W y)')
# Whenever `x` holds, then `y` holds in the next two time units.
phi5 = mtl.parse('G(x -> F[0, 2] y)')
# We also support timed until.
phi6 = mtl.parse('(a U[0, 2] b)')
# Finally, if time is discretized, we also support the next operator.
# Thus, LTL can also be modeled.
# `a` holds in two time steps.
phi7 = mtl.parse('XX a')
Boolean Evaluation
Given a property phi, one can evaluate is a timeseries satisifies phi. Time Series can either be
defined using a dictionary mapping atomic predicate names to lists of (time, val) pairs or using
the DiscreteSignals API (used internally).
There are two types of evaluation. One uses the boolean semantics of MTL and the other uses Signal Temporal Logic like semantics.
# Assumes piece wise constant interpolation.
data = {
'a': [(0, True), (1, False), (3, False)]
'b': [(0, False), (0.2, True), (4, False)]
}
phi = mtl.parse('F(a | b)')
print(phi(data, quantitative=False))
# output: True
# Evaluate at t=3
print(phi(data, t=3, quantitative=False))
# output: False
# Evaluate with discrete time
phi = mtl.parse('X b')
print(phi(data, dt=0.2, quantitative=False))
# output: True
Quantitative Evaluate (Signal Temporal Logic)
# Assumes piece wise constant interpolation.
data = {
'a': [(0, 100), (1, -1), (3, -2)]
'b': [(0, 20), (0.2, 2), (4, -10)]
}
phi = mtl.parse('F(a | b)')
print(phi(data))
# output: 100
# Evaluate at t=3
print(phi(data, t=3))
# output: 2
# Evaluate with discrete time
phi = mtl.parse('X b')
print(phi(data, dt=0.2))
# output: 2
Utilities
import mtl
from mtl import utils
print(utils.scope(mtl.parse('XX a'), dt=0.1))
# output: 0.2
print(utils.discretize(mtl.parse('F[0, 0.2] a'), dt=0.1))
# output: (a | X a | XX a)