Metric Temporal Logic (MTL) as-a-service
Find a file
Marcell Vazquez-Chanlatte 65e0783047 added badges
2018-09-25 14:23:12 -07:00
assets make logo smaller 2018-09-25 14:15:35 -07:00
mtl forgot to add sugar module + fix breakage due to sugar module 2018-09-24 17:27:57 -07:00
.gitignore yapf + pylint + add style checks to tests 2017-10-26 22:00:03 -07:00
.travis.yml fix travis + change parsing of true/false 2018-09-08 00:34:20 -07:00
LICENSE restructing to move repo 2016-11-02 17:54:47 -07:00
README.md added badges 2018-09-25 14:23:12 -07:00
requirements.txt Update python-dateutil from 2.6.1 to 2.7.3 2018-09-24 17:37:19 -07:00
setup.py disable qa on description 2018-09-25 14:17:00 -07:00

py-metric-temporal logic logo
A library for manipulating and evaluating metric temporal logic.

Build Status codecov Updates

PyPI version License: MIT

About

Python library for working with Metric Temporal Logic (MTL). Metric Temporal Logic is an extension of Linear Temporal Logic (LTL) for specifying properties over time series (See Alur). Some practical examples are given in the usage.

Installation

$ pip install metric-temporal-logic

Usage

To begin, we import mtl.

import mtl

Propositional logic (using parse api)

# - Lowercase strings denote atomic predicates.
phi0 = mtl.parse('atomicpred')

# - Binary operators need to be surrounded by parens.
phi1 = mtl.parse('((a & b & c) | d | e)')
phi2 = mtl.parse('(a -> b) & (~a -> c)')
phi3 = mtl.parse('(a -> b -> c)')
phi4 = mtl.parse('(a <-> b <-> c)')
phi5 = mtl.parse('(x ^ y ^ z)')

# - Unary operators (negation)
phi6 = mtl.parse('~a')
phi7 = mtl.parse('~(a)')

Propositional logic (using python syntax)

a, b = mtl.parse('a'), mtl.parse('b')
phi0 = ~a
phi1 = a & b
phi2 = a | b

# TODO: add
phi3 = a ^ b
phi4 = a.iff(b)
phi5 = a.implies(b)

Modal Logic (parser api)

# Eventually `x` will hold.
phi1 = mtl.parse('F x')

# `x & y` will always hold.
phi2 = mtl.parse('G(x & y)')

# `x` holds until `y` holds. 
# Note that since `U` is binary, it requires parens.
phi3 = mtl.parse('(x U y)')

# Weak until (`y` never has to hold).
phi4 = mtl.parse('(x W y)')

# Whenever `x` holds, then `y` holds in the next two time units.
phi5 = mtl.parse('G(x -> F[0, 2] y)')

# We also support timed until.
phi6 = mtl.parse('(a U[0, 2] b)')

# Finally, if time is discretized, we also support the next operator.
# Thus, LTL can also be modeled.
# `a` holds in two time steps.
phi7 = mtl.parse('XX a')

Modal Logic (using python syntax)

a, b = mtl.parse('a'), mtl.parse('b')

# Eventually `a` will hold.
phi1 = a.eventually()

# `a & b` will always hold.
phi2 = (a & b).always()

# `a` until `b`
phi3 = a.until()

# `a` weak until `b`
phi4 = a.weak_until(b)

# Whenever `a` holds, then `b` holds in the next two time units.
phi5 = (a.implies(b.eventually(lo=0, hi=2))).always()

# We also support timed until.
phi6 = a.timed_until(b, lo=0, hi=2)

# `a` holds in two time steps.
phi7 = a >> 2

Boolean Evaluation

# Assumes piece wise constant interpolation.
data = {
    'a': [(0, True), (1, False), (3, False)]
    'b': [(0, False), (0.2, True), (4, False)]
}

phi = mtl.parse('F(a | b)')
print(phi(data, quantitative=False))
# output: True

# Evaluate at t=3
print(phi(data, t=3, quantitative=False))
# output: False

# Evaluate with discrete time
phi = mtl.parse('X b')
print(phi(data, dt=0.2, quantitative=False))
# output: True

Quantitative Evaluate

# Assumes piece wise constant interpolation.
data = {
    'a': [(0, 100), (1, -1), (3, -2)]
    'b': [(0, 20), (0.2, 2), (4, -10)]
}

phi = mtl.parse('F(a | b)')
print(phi(data))
# output: 100

# Evaluate at t=3
print(phi(data, t=3))
# output: 2

# Evaluate with discrete time
phi = mtl.parse('X b')
print(phi(data, dt=0.2))
# output: 2

Utilities

import mtl
from mtl import utils

print(utils.scope(mtl.parse('XX a'), dt=0.1))
# output: 0.2

print(utils.discretize(mtl.parse('F[0, 0.2] a'), dt=0.1))
# output: (a | X a | XX a)