from typing import List, Type, Dict, Mapping, T, TypeVar from collections import deque import operator as op from functools import reduce import lenses from lenses import lens import funcy as fn import sympy import traces import stl.ast from stl.ast import (LinEq, And, Or, NaryOpSTL, F, G, Interval, Neg, AtomicPred, Param, AST) from stl.types import STL, STL_Generator, MTL Lens = TypeVar('Lens') def walk(phi: STL) -> STL_Generator: """Walk of the AST.""" pop = deque.pop children = deque([phi]) while len(children) > 0: node = pop(children) yield node children.extend(node.children) def vars_in_phi(phi): focus = stl.terms_lens(phi) return set(focus.tuple_(lens.id, lens.time).get_all()) def type_pred(*args: List[Type]) -> Mapping[Type, bool]: ast_types = set(args) return lambda x: type(x) in ast_types def ast_lens(phi: STL, bind=True, *, pred=None, focus_lens=None) -> Lens: if focus_lens is None: focus_lens = lambda _: [lens] if pred is None: pred = lambda _: False l = lenses.bind(phi) if bind else lens return l.Fork(*_ast_lens(phi, pred=pred, focus_lens=focus_lens)) def _ast_lens(phi: STL, pred, focus_lens) -> Lens: if pred(phi): yield from focus_lens(phi) if phi is None or not phi.children: return if phi is stl.TOP or phi is stl.BOT: child_lenses = [lens] elif isinstance(phi, stl.ast.Until): child_lenses = [lens.GetAttr('arg1'), lens.GetAttr('arg2')] elif isinstance(phi, NaryOpSTL): child_lenses = [ lens.GetAttr('args')[j] for j, _ in enumerate(phi.args) ] else: child_lenses = [lens.GetAttr('arg')] for l in child_lenses: yield from [l & cl for cl in _ast_lens(l.get()(phi), pred, focus_lens)] lineq_lens = fn.partial(ast_lens, pred=type_pred(LinEq)) AP_lens = fn.partial(ast_lens, pred=type_pred(stl.ast.AtomicPred)) and_or_lens = fn.partial(ast_lens, pred=type_pred(And, Or)) def terms_lens(phi: STL, bind: bool = True) -> Lens: return lineq_lens(phi, bind).Each().terms.Each() def param_lens(phi: STL) -> Lens: def focus_lens(leaf): candidates = [lens.const] if isinstance(leaf, LinEq) else [ lens.GetAttr('interval')[0], lens.GetAttr('interval')[1] ] return (x for x in candidates if isinstance(x.get()(leaf), Param)) return ast_lens( phi, pred=type_pred(LinEq, F, G), focus_lens=focus_lens) def set_params(phi, val) -> STL: l = param_lens(phi) if isinstance(phi, AST) else phi return l.modify(lambda x: float(val.get(x, val.get(str(x), x)))) def f_neg_or_canonical_form(phi: STL) -> STL: if isinstance(phi, LinEq): return phi children = [f_neg_or_canonical_form(s) for s in phi.children] if isinstance(phi, (And, G)): children = [Neg(s) for s in children] children = tuple(children) if isinstance(phi, Or): return Or(children) elif isinstance(phi, And): return Neg(Or(children)) elif isinstance(phi, Neg): return Neg(children[0]) elif isinstance(phi, F): return F(phi.interval, children[0]) elif isinstance(phi, G): return Neg(F(phi.interval, children[0])) else: raise NotImplementedError def _lineq_lipschitz(lineq): return sum(map(abs, lens(lineq).Each().terms.Each().coeff.collect())) def linear_stl_lipschitz(phi): """Infinity norm lipschitz bound of linear inequality predicate.""" return float(max(map(_lineq_lipschitz, lineq_lens(phi).Each().collect()))) def inline_context(phi, context): phi2 = None update = lambda ap: context.get(ap, ap) while phi2 != phi: phi2, phi = phi, AP_lens(phi).modify(update) # TODO: this is hack to flatten the AST. Fix! return stl.parse(str(phi)) op_lookup = { ">": op.gt, ">=": op.ge, "<": op.lt, "<=": op.le, "=": op.eq, } def get_times(x): times = set.union(*({t for t, _ in v.items()} for v in x.values())) return sorted(times) def eval_lineq(lineq, x, times=None, compact=True): if times is None: times = get_times(x) def eval_term(term, t): return float(term.coeff) * x[term.id.name][t] output = traces.TimeSeries(domain=traces.Domain(times[0], times[-1])) terms = lens(lineq).Each().terms.Each().collect() for t in times: lhs = sum(eval_term(term, t) for term in terms) output[t] = op_lookup[lineq.op](lhs, lineq.const) if compact: output.compact() return output def eval_lineqs(phi, x, times=None): if times is None: times = get_times(x) lineqs = set(lineq_lens(phi).Each().collect()) return {lineq: eval_lineq(lineq, x, times=times) for lineq in lineqs} # EDSL def alw(phi, *, lo, hi): return G(Interval(lo, hi), phi) def env(phi, *, lo, hi): return F(Interval(lo, hi), phi) def until(phi1, phi2, *, lo, hi): return stl.ast.Until(Interval(lo, hi), phi1, phi2) def andf(*args): return reduce(op.and_, args) if args else stl.TOP def orf(*args): return reduce(op.or_, args) if args else stl.TOP def implies(x, y): return ~x | y def xor(x, y): return (x | y) & ~(x & y) def iff(x, y): return (x & y) | (~x & ~y)