implemented smooth_robustness for constant base

This commit is contained in:
Marcell Vazquez-Chanlatte 2016-12-15 15:49:35 -08:00
parent 5fde483116
commit f3d118f01e

View file

@ -1,88 +1,120 @@
# TODO: technically incorrect on 0 robustness since conflates < and >
from functools import singledispatch
from collections import namedtuple
import sympy as sym
from numpy import arange
from funcy import pairwise
from lenses import lens
import stl.ast
from stl.ast import t_sym
from stl.utils import walk
from stl.robustness import op_lookup
Param = namedtuple("Param", ["L", "h", "B", "id_map"])
@singledispatch
def smooth_robustness(stl, L, h, eps, depth):
raise NotImplementedError
@smooth_robustness.register(stl.And)
@smooth_robustness.register(stl.G)
def _(stl, L, H, eps):
raise NotImplementedError("Call canonicalization function")
def eps_to_base(eps, N):
return N**(1/eps)
def soft_max(rs, eps=0.1):
N = len(rs)
B = eps_to_base(eps, N)
return sym.log(sum(B**r for r in rs), B)
def node_base(_, _1, _2):
return sym.e
def LSE(rs, eps=0.1):
N = len(rs)
B = eps_to_base(eps, N)
return soft_max(rs) - sym.log(N, B)
@node_base.register(stl.ast.Or)
def node_base(_, eps, _1):
return len(stl.args)**(1/eps)
@smooth_robustness.register(stl.Or)
def _(stl, L, h, eps, depth=0):
rl, rh = list(zip(
*[smooth_robustness(arg, L, h, eps=eps/2, depth=depth+1)
for arg in stl.args]))
return soft_max(rl, eps=eps/2), LSE(rh, eps=eps/2)
def soft_max2(r, eps, lo, hi, L, H, depth):
N = sym.ceiling((hi - lo) / H)
B = eps_to_base(eps, N)
i = sym.Symbol("i_{}".format(depth))
x_ij = (L*H + r.subs({t_sym: t_sym+i}) + r.subs({t_sym: t_sym+i+1}))/2
return sym.log(sym.summation(B**x_ij, (i, lo, hi)), B)
def LSE2(r, eps, lo, hi, H, depth):
N = sym.ceiling((hi - lo) / H)
B = eps_to_base(eps, N)
i = sym.Symbol("i_{}".format(depth))
x_i = r.subs({t_sym: t_sym+i})
return sym.log(sym.summation(B**x_i, (i, lo, hi))/N, B)
@smooth_robustness.register(stl.F)
def _(stl, L, H, eps, depth=0):
@node_base.register(stl.ast.F)
def node_base(_, eps, L):
lo, hi = stl.interval
times = arange(lo, hi, H)
rl, rh = smooth_robustness(stl.arg, L, H, eps=eps/2, depth=depth+1)
return (LSE2(rl, eps/2, lo, hi, H, depth),
soft_max2(rh, eps/2, lo, hi, L, H, depth))
return sym.ceil((hi - lo)*L/eps)**(2/eps)
@smooth_robustness.register(stl.Neg)
def _(stl, L, H, eps, depth=0):
rl, rh = smooth_robustness(arg, L, H, eps, depth=depth+1)
return -rh, -rl
def sample_rate(eps, L):
return eps / L
@smooth_robustness.register(stl.LinEq)
def _(stl, L, H, eps, depth=0):
op = op_lookup[stl.op]
retval = op(eval_terms(stl), stl.const)
return retval, retval
def admissible_params(phi, eps, L):
return Param(
L=L,
h=sample_rate(eps, L),
B=max(node_base(n, eps, L) for n in walk(phi)),
id_map={n:i for i, n in enumerate(walk(phi))}
)
def smooth_robustness(phi, eps, L):
p = admissible_params(phi, eps, L)
lo, hi = beta(phi, p), alpha(phi, p)
return sym.log(lo, B), sym.log(hi, B)
# Alpha implementation
@singledispatch
def alpha(stl, p):
raise NotImplementedError("Call canonicalization function")
def eval_terms(lineq):
return sum(map(eval_term, lineq.terms))
def eval_term(term):
return term.coeff*sym.Function(term.id.name)(t_sym)
@alpha.register(stl.LinEq)
def _(phi, p):
op = op_lookup[phi.op]
B = eps_to_base(eps/depth, N)
x = op(eval_terms(phi), phi.const)
return B**x
@alpha.register(stl.Neg)
def _(phi, p):
return 1/beta(phi, p)
@alpha.register(stl.Or)
def _(phi, p):
return sum(alpha(psi, p) for psi in psi in phi.args)
def F_params(phi, p, r):
hi, lo = phi.interval
N = sym.ceiling((hi - lo) / p.h)
i = sym.Symbol("i_{}".format(p.id_map[phi]))
x = lambda k: r.subs({t_sym: t_sym+k+lo})
return N, i, x
@alpha.register(stl.F)
def _(phi, p):
N, i, x = F_params(phi, p, alpha(phi.arg, p))
x_ij = sym.sqrt(p.B**(L*h)*x(i)*x(i+1))
return sym.summation(x_ij, (i, 0, N-1))
# Beta implementation
@singledispatch
def beta(phi, p):
raise NotImplementedError("Call canonicalization function")
beta.register(stl.LinEq)(alpha)
@beta.register(stl.Neg)
def _(phi, p):
return 1/alpha(phi, p)
@beta.register(stl.Or)
def _(phi, p):
return alpha(phi)/len(phi.args)
@beta.register(stl.F)
def _(phi, p):
N, i, x = F_params(phi, p, beta(phi.arg, p))
return sym.summation(x(i), (i, 0, N))