upgrade to new lens version
This commit is contained in:
parent
212a8c195a
commit
d78037816b
5 changed files with 86 additions and 61 deletions
40
stl/ast.py
40
stl/ast.py
|
|
@ -1,5 +1,4 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
# TODO: create iso lens between sugar and non-sugar
|
||||
# TODO: supress + given a + (-b). i.e. want a - b
|
||||
|
||||
from collections import namedtuple, deque
|
||||
|
|
@ -38,8 +37,9 @@ class AST(object):
|
|||
def __invert__(self):
|
||||
return Neg(self)
|
||||
|
||||
@property
|
||||
def children(self):
|
||||
return []
|
||||
return set()
|
||||
|
||||
|
||||
class _Top(AST):
|
||||
|
|
@ -70,9 +70,10 @@ class AtomicPred(namedtuple("AP", ["id"]), AST):
|
|||
|
||||
def __repr__(self):
|
||||
return f"{self.id}"
|
||||
|
||||
|
||||
@property
|
||||
def children(self):
|
||||
return []
|
||||
return set()
|
||||
|
||||
|
||||
class LinEq(namedtuple("LinEquality", ["terms", "op", "const"]), AST):
|
||||
|
|
@ -80,9 +81,10 @@ class LinEq(namedtuple("LinEquality", ["terms", "op", "const"]), AST):
|
|||
|
||||
def __repr__(self):
|
||||
return " + ".join(map(str, self.terms)) + f" {self.op} {self.const}"
|
||||
|
||||
|
||||
@property
|
||||
def children(self):
|
||||
return []
|
||||
return set()
|
||||
|
||||
def __hash__(self):
|
||||
# TODO: compute hash based on contents
|
||||
|
|
@ -101,9 +103,10 @@ class Interval(namedtuple('I', ['lower', 'upper'])):
|
|||
|
||||
def __repr__(self):
|
||||
return f"[{self.lower},{self.upper}]"
|
||||
|
||||
|
||||
@property
|
||||
def children(self):
|
||||
return [self.lower, self.upper]
|
||||
return {self.lower, self.upper}
|
||||
|
||||
|
||||
class NaryOpSTL(namedtuple('NaryOp', ['args']), AST):
|
||||
|
|
@ -112,9 +115,10 @@ class NaryOpSTL(namedtuple('NaryOp', ['args']), AST):
|
|||
OP = "?"
|
||||
def __repr__(self):
|
||||
return f" {self.OP} ".join(f"({x})" for x in self.args)
|
||||
|
||||
|
||||
@property
|
||||
def children(self):
|
||||
return self.args
|
||||
return set(self.args)
|
||||
|
||||
|
||||
class Or(NaryOpSTL):
|
||||
|
|
@ -141,8 +145,9 @@ class ModalOp(namedtuple('ModalOp', ['interval', 'arg']), AST):
|
|||
def __repr__(self):
|
||||
return f"{self.OP}{self.interval}({self.arg})"
|
||||
|
||||
@property
|
||||
def children(self):
|
||||
return [self.arg]
|
||||
return {self.arg}
|
||||
|
||||
|
||||
class F(ModalOp):
|
||||
|
|
@ -168,8 +173,9 @@ class Until(namedtuple('ModalOp', ['arg1', 'arg2']), AST):
|
|||
def __repr__(self):
|
||||
return f"({self.arg1}) U ({self.arg2})"
|
||||
|
||||
@property
|
||||
def children(self):
|
||||
return [self.arg1, self.arg2]
|
||||
return {self.arg1, self.arg2}
|
||||
|
||||
def __hash__(self):
|
||||
# TODO: compute hash based on contents
|
||||
|
|
@ -181,9 +187,10 @@ class Neg(namedtuple('Neg', ['arg']), AST):
|
|||
|
||||
def __repr__(self):
|
||||
return f"¬({self.arg})"
|
||||
|
||||
|
||||
@property
|
||||
def children(self):
|
||||
return [self.arg]
|
||||
return {self.arg}
|
||||
|
||||
def __hash__(self):
|
||||
# TODO: compute hash based on contents
|
||||
|
|
@ -195,9 +202,10 @@ class Next(namedtuple('Next', ['arg']), AST):
|
|||
|
||||
def __repr__(self):
|
||||
return f"X({self.arg})"
|
||||
|
||||
|
||||
@property
|
||||
def children(self):
|
||||
return [self.arg]
|
||||
return {self.arg}
|
||||
|
||||
def __hash__(self):
|
||||
# TODO: compute hash based on contents
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@ import stl
|
|||
oo = float('inf')
|
||||
|
||||
def pointwise_sat(phi):
|
||||
ap_names = [z.id.name for z in stl.utils.AP_lens(phi).get_all()]
|
||||
ap_names = [z.id.name for z in stl.utils.AP_lens(phi).Each().collect()]
|
||||
def _eval_stl(x, t):
|
||||
evaluated = stl.utils.eval_lineqs(phi, x)
|
||||
evaluated.update(fn.project(x, ap_names))
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
from hypothesis_cfg import ContextFreeGrammarStrategy
|
||||
|
||||
import hypothesis.strategies as st
|
||||
from hypothesis.searchstrategy.strategies import SearchStrategy
|
||||
from hypothesis.strategies import integers
|
||||
|
||||
import stl
|
||||
|
||||
|
|
@ -15,11 +15,32 @@ GRAMMAR = {
|
|||
}
|
||||
|
||||
|
||||
|
||||
def build_lineq(params):
|
||||
pass
|
||||
|
||||
|
||||
LinEqStrategy = st.builds(
|
||||
lambda x: stl.ast.Lineq(*x),
|
||||
st.tuples(
|
||||
st.lists(
|
||||
st.tuples(
|
||||
st.sampled_from(["x", "y", "z","w"]),
|
||||
st.integers(min_value=-5, max_value=5)),
|
||||
min_size=1, max_size=4, unique=True),
|
||||
st.sampled_from([">=", "<=", "<", ">", "="]),
|
||||
st.integers(min_value=-5, max_value=5)
|
||||
))
|
||||
|
||||
|
||||
class SignalTemporalLogicStategy(SearchStrategy):
|
||||
def __init__(self, max_length: int):
|
||||
super(SearchStrategy, self).__init__()
|
||||
self.cfg_gen = ContextFreeGrammarStrategy(
|
||||
GRAMMAR, max_length=max_length, start='phi')
|
||||
self.ap_gen = st.builds(
|
||||
lambda i: stl.ast.AtomicPred(f"AP{i}"),
|
||||
st.integers(min_value=0, max_value=max_length))
|
||||
|
||||
def do_draw(self, data):
|
||||
# TODO: randomly assign all intervals
|
||||
|
|
@ -27,4 +48,6 @@ class SignalTemporalLogicStategy(SearchStrategy):
|
|||
# TODO: randomly generate boolean predicate
|
||||
# TODO: randomly generate linear predicate
|
||||
phi = stl.parse("".join(self.cfg_gen.do_draw(data)))
|
||||
ap_lens = stl.utils.AP_lens(phi).Each()
|
||||
phi = ap_lens.modify(lambda _: self.ap_gen.do_draw(data))
|
||||
return phi
|
||||
|
|
|
|||
76
stl/utils.py
76
stl/utils.py
|
|
@ -1,9 +1,10 @@
|
|||
from typing import List, Type, Dict, Mapping, T
|
||||
from typing import List, Type, Dict, Mapping, T, TypeVar
|
||||
from collections import deque
|
||||
import operator as op
|
||||
from functools import reduce
|
||||
|
||||
from lenses import lens, Lens
|
||||
import lenses
|
||||
from lenses import lens
|
||||
import funcy as fn
|
||||
import sympy
|
||||
import traces
|
||||
|
|
@ -13,59 +14,52 @@ from stl.ast import (LinEq, And, Or, NaryOpSTL, F, G, Interval, Neg,
|
|||
AtomicPred)
|
||||
from stl.types import STL, STL_Generator, MTL
|
||||
|
||||
Lens = TypeVar('Lens')
|
||||
|
||||
def walk(phi:STL) -> STL_Generator:
|
||||
"""DSF walk of the AST."""
|
||||
"""Walk of the AST."""
|
||||
pop = deque.pop
|
||||
children = deque([phi])
|
||||
while len(children) > 0:
|
||||
node = pop(children)
|
||||
yield node
|
||||
children.extend(node.children())
|
||||
children.extend(node.children)
|
||||
|
||||
def vars_in_phi(phi):
|
||||
focus = stl.terms_lens(phi)
|
||||
return set(focus.tuple_(lens().id, lens().time).get_all())
|
||||
return set(focus.tuple_(lens.id, lens.time).get_all())
|
||||
|
||||
def type_pred(*args:List[Type]) -> Mapping[Type, bool]:
|
||||
ast_types = set(args)
|
||||
return lambda x: type(x) in ast_types
|
||||
|
||||
|
||||
def _child_lens(psi:STL, focus:Lens) -> STL_Generator:
|
||||
if psi is None:
|
||||
return
|
||||
elif psi is stl.TOP or psi is stl.BOT:
|
||||
return
|
||||
elif isinstance(psi, stl.ast.Until):
|
||||
yield from [focus.arg1, focus.arg2]
|
||||
elif isinstance(psi, NaryOpSTL):
|
||||
for j, _ in enumerate(psi.args):
|
||||
yield focus.args[j]
|
||||
else:
|
||||
yield focus.arg
|
||||
|
||||
|
||||
def ast_lens(phi:STL, bind:bool=True, *,
|
||||
pred:Mapping[T, bool], focus_lens:Lens=None) -> Lens:
|
||||
def ast_lens(phi:STL, bind=True, *, pred=None, focus_lens=None) -> Lens:
|
||||
if focus_lens is None:
|
||||
focus_lens = lambda x: [lens()]
|
||||
tls = list(fn.flatten(_ast_lens(phi, pred=pred, focus_lens=focus_lens)))
|
||||
tl = lens().tuple_(*tls).each_()
|
||||
return tl.bind(phi) if bind else tl
|
||||
focus_lens = lambda _: [lens]
|
||||
if pred is None:
|
||||
pred = lambda _: False
|
||||
l = lenses.bind(phi) if bind else lens
|
||||
return l.Tuple(*_ast_lens(phi, pred=pred, focus_lens=focus_lens))
|
||||
|
||||
def _ast_lens(phi:STL, pred, focus_lens) -> Lens:
|
||||
if pred(phi):
|
||||
yield from focus_lens(phi)
|
||||
|
||||
if phi is None or not phi.children:
|
||||
return
|
||||
|
||||
def _ast_lens(phi, *, pred, focus=lens(), focus_lens):
|
||||
psi = focus.get(state=phi)
|
||||
ret_lens = [focus.add_lens(l) for l in focus_lens(psi)] if pred(psi) else []
|
||||
|
||||
if isinstance(psi, (LinEq, stl.ast.AtomicPred)):
|
||||
return ret_lens
|
||||
|
||||
child_lenses = list(_child_lens(psi, focus=focus))
|
||||
ret_lens += [_ast_lens(phi, pred=pred, focus=cl, focus_lens=focus_lens)
|
||||
for cl in child_lenses]
|
||||
return ret_lens
|
||||
|
||||
if phi is stl.TOP or phi is stl.BOT:
|
||||
child_lenses = [lens]
|
||||
elif isinstance(phi, stl.ast.Until):
|
||||
child_lenses = [lens.GetAttr('arg1'), lens.GetAttr('arg2')]
|
||||
elif isinstance(phi, NaryOpSTL):
|
||||
child_lenses = [lens.GetAttr('args')[j] for j, _ in enumerate(phi.args)]
|
||||
else:
|
||||
child_lenses = [lens.GetAttr('arg')]
|
||||
for l in child_lenses:
|
||||
yield from [l & cl for cl in _ast_lens(l.get()(phi), pred, focus_lens)]
|
||||
|
||||
|
||||
lineq_lens = fn.partial(ast_lens, pred=type_pred(LinEq))
|
||||
AP_lens = fn.partial(ast_lens, pred=type_pred(stl.ast.AtomicPred))
|
||||
|
|
@ -78,7 +72,7 @@ def terms_lens(phi:STL, bind:bool=True) -> Lens:
|
|||
def param_lens(phi:STL) -> Lens:
|
||||
is_sym = lambda x: isinstance(x, sympy.Symbol)
|
||||
def focus_lens(leaf):
|
||||
return [lens().const] if isinstance(leaf, LinEq) else [lens().interval[0], lens().interval[1]]
|
||||
return [lens.const] if isinstance(leaf, LinEq) else [lens().interval[0], lens().interval[1]]
|
||||
|
||||
return ast_lens(phi, pred=type_pred(LinEq, F, G),
|
||||
focus_lens=focus_lens).filter_(is_sym)
|
||||
|
|
@ -93,7 +87,7 @@ def f_neg_or_canonical_form(phi:STL) -> STL:
|
|||
if isinstance(phi, LinEq):
|
||||
return phi
|
||||
|
||||
children = [f_neg_or_canonical_form(s) for s in phi.children()]
|
||||
children = [f_neg_or_canonical_form(s) for s in phi.children]
|
||||
if isinstance(phi, (And, G)):
|
||||
children = [Neg(s) for s in children]
|
||||
children = tuple(children)
|
||||
|
|
@ -160,7 +154,7 @@ def eval_lineq(lineq, x, times=None, compact=True):
|
|||
return float(term.coeff)*x[term.id.name][t]
|
||||
|
||||
output = traces.TimeSeries(domain=traces.Domain(times[0], times[-1]))
|
||||
terms = lens(lineq).terms.each_().get_all()
|
||||
terms = lens(lineq).Each().terms.Each().collect()
|
||||
for t in times:
|
||||
lhs = sum(eval_term(term, t) for term in terms)
|
||||
output[t] = op_lookup[lineq.op](lhs, lineq.const)
|
||||
|
|
@ -172,7 +166,7 @@ def eval_lineq(lineq, x, times=None, compact=True):
|
|||
def eval_lineqs(phi, x, times=None):
|
||||
if times is None:
|
||||
times = get_times(x)
|
||||
lineqs = set(lineq_lens(phi).get_all())
|
||||
lineqs = set(lineq_lens(phi).Each().collect())
|
||||
return {lineq: eval_lineq(lineq, x, times=times) for lineq in lineqs}
|
||||
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue