payed off testing technical debt + bug fixes + traces based evaluator

This commit is contained in:
Marcell Vazquez-Chanlatte 2017-11-11 17:35:48 -08:00
parent 72639bc59f
commit cba8a83c8e
12 changed files with 302 additions and 172 deletions

View file

@ -5,133 +5,135 @@ import operator as op
from functools import singledispatch
import funcy as fn
import traces
import stl
import stl.ast
from lenses import bind
oo = float('inf')
from stl.utils import const_trace, andf, orf
def pointwise_sat(phi):
TRUE_TRACE = const_trace(True)
FALSE_TRACE = const_trace(False)
def negate_trace(x):
return x.operation(TRUE_TRACE, op.xor)
def pointwise_sat(phi, dt=0.1):
ap_names = [z.id for z in phi.atomic_predicates]
def _eval_stl(x, t):
def _eval_stl(x, t, dt=0.1):
evaluated = stl.utils.eval_lineqs(phi, x)
evaluated.update(fn.project(x, ap_names))
return eval_stl(phi)(evaluated, t)
return bool(eval_stl(phi, dt)(evaluated)[t])
return _eval_stl
@singledispatch
def eval_stl(stl):
def eval_stl(phi, dt):
raise NotImplementedError
@eval_stl.register(stl.Or)
def eval_stl_or(phi):
fs = [eval_stl(arg) for arg in phi.args]
return lambda x, t: any(f(x, t) for f in fs)
def eval_stl_or(phi, dt):
fs = [eval_stl(arg, dt) for arg in phi.args]
def _eval(x):
out = orf(*(f(x) for f in fs))
out.compact()
return out
return _eval
@eval_stl.register(stl.And)
def eval_stl_and(stl):
fs = [eval_stl(arg) for arg in stl.args]
return lambda x, t: all(f(x, t) for f in fs)
def eval_stl_and(phi, dt):
fs = [eval_stl(arg, dt) for arg in phi.args]
def _eval(x):
out = andf(*(f(x) for f in fs))
out.compact()
return out
def get_times(x, tau, lo=None, hi=None):
domain = fn.first(x.values()).domain
if lo is None or lo is -oo:
lo = domain.start()
if hi is None or hi is oo:
hi = domain.end()
end = min(v.domain.end() for v in x.values())
hi = hi + tau if hi + tau <= end else end
lo = lo + tau if lo + tau <= end else end
if lo > hi:
return []
elif hi == lo:
return [lo]
all_times = fn.cat(v.slice(lo, hi).items() for v in x.values())
return sorted(set(fn.pluck(0, all_times)))
return _eval
@eval_stl.register(stl.Until)
def eval_stl_until(stl):
def _until(x, t):
f1, f2 = eval_stl(stl.arg1), eval_stl(stl.arg2)
for tau in get_times(x, t):
if not f1(x, tau):
return f2(x, tau)
return False
return _until
def eval_unary_temporal_op(phi, always=True):
fold = all if always else any
lo, hi = phi.interval
if lo > hi:
retval = True if always else False
return lambda x, t: retval
f = eval_stl(phi.arg)
if hi == lo:
return lambda x, t: f(x, t)
return lambda x, t: fold(f(x, tau) for tau in get_times(x, t, lo, hi))
def eval_stl_until(phi, dt):
raise NotImplementedError
@eval_stl.register(stl.F)
def eval_stl_f(phi):
return eval_unary_temporal_op(phi, always=False)
def eval_stl_f(phi, dt):
phi = ~stl.G(phi.interval, ~phi.arg)
return eval_stl(phi, dt)
@eval_stl.register(stl.G)
def eval_stl_g(phi):
return eval_unary_temporal_op(phi, always=True)
def eval_stl_g(phi, dt):
f = eval_stl(phi.arg, dt)
a, b = phi.interval
def process_intervals(x):
for (start, val), (end, val2) in x.iterintervals():
start2, end2 = start - b, end + a
if end2 > start2:
yield (start2, val)
def _eval(x):
y = f(x)
if len(y) <= 1:
return y
out = traces.TimeSeries(process_intervals(y))
out.compact()
return out
return _eval
@eval_stl.register(stl.Neg)
def eval_stl_neg(stl):
f = eval_stl(stl.arg)
return lambda x, t: not f(x, t)
def eval_stl_neg(phi, dt):
f = eval_stl(phi.arg, dt)
def _eval(x):
out = negate_trace(f(x))
out.compact()
return out
return _eval
op_lookup = {
">": op.gt,
">=": op.ge,
"<": op.lt,
"<=": op.le,
"=": op.eq,
}
@eval_stl.register(stl.ast.Next)
def eval_stl_next(phi, dt):
f = eval_stl(phi.arg, dt)
def _eval(x):
out = traces.TimeSeries((t + dt, v) for t, v in f(x))
out.compact()
return out
return _eval
@eval_stl.register(stl.AtomicPred)
def eval_stl_ap(stl):
return lambda x, t: x[str(stl.id)][t]
def eval_stl_ap(phi, _):
def _eval(x):
out = x[str(phi.id)]
out.compact()
return out
return _eval
@eval_stl.register(type(stl.TOP))
def eval_stl_top(_):
return lambda *_: True
def eval_stl_top(_, _1):
return lambda *_: TRUE_TRACE
@eval_stl.register(type(stl.BOT))
def eval_stl_bot(_):
return lambda *_: False
@eval_stl.register(stl.LinEq)
def eval_stl_lineq(lineq):
return lambda x, t: x[lineq][t]
def eval_terms(lineq, x, t):
terms = bind(lineq).terms.Each().collect()
return sum(eval_term(term, x, t) for term in terms)
def eval_term(term, x, t):
return float(term.coeff) * x[term.id][t]
def eval_stl_bot(_, _1):
return lambda *_: FALSE_TRACE