Implemented smooth_robustness's stl.F encoding
This commit is contained in:
parent
100f48a0ba
commit
8b267fa2c3
1 changed files with 15 additions and 20 deletions
|
|
@ -1,15 +1,14 @@
|
|||
# TODO: technically incorrect on 0 robustness since conflates < and >
|
||||
|
||||
from functools import singledispatch
|
||||
from operator import sub, add
|
||||
|
||||
import sympy as sym
|
||||
from lenses import lens
|
||||
from numpy import arange
|
||||
from funcy import pairwise, autocurry
|
||||
|
||||
import stl.ast
|
||||
from stl.ast import t_sym
|
||||
from stl.robustness import op_lookup
|
||||
|
||||
@singledispatch
|
||||
def smooth_robustness(stl, L, h):
|
||||
|
|
@ -20,47 +19,43 @@ def smooth_robustness(stl, L, h):
|
|||
def _(stl, L, H):
|
||||
raise NotImplementedError("Call canonicalization function")
|
||||
|
||||
def soft_max(rs):
|
||||
return sym.log(sum(sym.exp(r) for r in rs))
|
||||
def soft_max(rs, eps=0.1):
|
||||
B = 10
|
||||
return sym.log(sum(B**r for r in rs), B)
|
||||
|
||||
|
||||
def LSE(rs):
|
||||
return soft_max(rs) - sym.log(len(rs))
|
||||
def LSE(rs, eps=0.1):
|
||||
B = 10
|
||||
return soft_max(rs) - sym.log(len(rs), B)
|
||||
|
||||
|
||||
@smooth_robustness.register(stl.Or)
|
||||
def _(stl, L, h):
|
||||
rl, rh = list(zip(
|
||||
*[smooth_robustness(arg, depth) for arg in stl.args]))
|
||||
*[smooth_robustness(arg, L, h) for arg in stl.args]))
|
||||
return soft_max(rl), LSE(rh)
|
||||
|
||||
|
||||
@autocurry
|
||||
def x_ij(L, h, x_i, x_j):
|
||||
def x_ij(L, h, xi_xj):
|
||||
x_i, x_j = xi_xj
|
||||
return (L*h + x_i + x_j)/2
|
||||
|
||||
|
||||
@smooth_robustness.register(stl.F)
|
||||
def _(stl, L, H):
|
||||
lo, hi = stl.interval
|
||||
times = arange(lo, hi, H)
|
||||
rl, rh = smooth_robustness(stl.arg)
|
||||
los, his = zip(*[rl.subs({t_sym: t}), rh.subs({t_sym: t}) for t in times])
|
||||
return LSE(rl), soft_max(map(x_ij(L, H), his))
|
||||
rl, rh = smooth_robustness(stl.arg, L, H)
|
||||
los, his = zip(*[(rl.subs({t_sym: t_sym + t}), rh.subs({t_sym: t_sym + t})) for t in times])
|
||||
return LSE(los), soft_max(map(x_ij(L, H), pairwise(his)))
|
||||
|
||||
|
||||
@smooth_robustness.register(stl.Neg)
|
||||
def _(stl, L, H):
|
||||
rl, rh = smooth_robustness(arg)
|
||||
rl, rh = smooth_robustness(arg, L, H)
|
||||
return -rh, -rl
|
||||
|
||||
op_lookup = {
|
||||
">": sub,
|
||||
">=": sub,
|
||||
"<": lambda x, y: sub(y, x),
|
||||
"<=": lambda x, y: sub(y, x),
|
||||
"=": lambda a, b: -abs(a - b),
|
||||
}
|
||||
|
||||
|
||||
@smooth_robustness.register(stl.LinEq)
|
||||
def _(stl, L, H):
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue