step towards actually testing boolean evaluation on random formulas
This commit is contained in:
parent
7d8cf78222
commit
75042d0dc4
5 changed files with 17 additions and 20 deletions
|
|
@ -23,14 +23,13 @@ TODO: Automatically generate input time series.
|
|||
"""
|
||||
|
||||
x = {
|
||||
"A": traces.TimeSeries([(0, 1), (0.1, 1), (0.2, 4)]),
|
||||
"B": traces.TimeSeries([(0, 2), (0.1, 4), (0.2, 2)]),
|
||||
"C": traces.TimeSeries([(0, True), (0.1, True), (0.2, False)]),
|
||||
'D': traces.TimeSeries({
|
||||
0.0: 2,
|
||||
13.8: 3,
|
||||
19.7: 2
|
||||
}),
|
||||
"x": traces.TimeSeries([(0, 1), (0.1, 1), (0.2, 4)]),
|
||||
"y": traces.TimeSeries([(0, 2), (0.1, 4), (0.2, 2)]),
|
||||
"AP1": traces.TimeSeries([(0, True), (0.1, True), (0.2, False)]),
|
||||
"AP2": traces.TimeSeries([(0, False), (0.2, True), (0.5, False)]),
|
||||
"AP3": traces.TimeSeries([(0, True), (0.1, True), (0.3, False)]),
|
||||
"AP4": traces.TimeSeries([(0, False), (0.1, False), (0.3, False)]),
|
||||
"AP5": traces.TimeSeries([(0, False), (0.1, False), (0.1, True)]),
|
||||
}
|
||||
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue