Integrate attr libraries

This commit is contained in:
Marcell Vazquez-Chanlatte 2018-09-17 22:43:21 -07:00
parent fb2e79b807
commit 472fd45ce2
9 changed files with 200 additions and 265 deletions

View file

@ -1,7 +1,9 @@
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
from collections import deque, namedtuple from collections import deque, namedtuple
from functools import lru_cache from functools import lru_cache
from typing import Union, NamedTuple
import attr
import funcy as fn import funcy as fn
from lenses import lens, bind from lenses import lens, bind
@ -24,48 +26,48 @@ def flatten_binary(phi, op, dropT, shortT):
return op(tuple(fn.mapcat(f, phi.args))) return op(tuple(fn.mapcat(f, phi.args)))
class AST(object): def _or(exp1, exp2):
__slots__ = () return flatten_binary(Or((exp1, exp2)), Or, BOT, TOP)
def __or__(self, other):
return flatten_binary(Or((self, other)), Or, BOT, TOP)
def __and__(self, other): def _and(exp1, exp2):
return flatten_binary(And((self, other)), And, TOP, BOT) return flatten_binary(And((exp1, exp2)), And, TOP, BOT)
def __invert__(self):
if isinstance(self, Neg):
return self.arg
return Neg(self)
def __rshift__(self, t): def _neg(exp):
if self in (BOT, TOP): if isinstance(exp, _Bot):
return self return _Top()
elif isinstance(exp, _Top):
return _Bot()
elif isinstance(exp, Neg):
return exp.arg
return Neg(exp)
def _eval(exp, trace, time=0):
return mtl.pointwise_sat(exp)(trace, time)
def _timeshift(exp, t):
if exp in (BOT, TOP):
return exp
phi = self
for _ in range(t): for _ in range(t):
phi = Next(phi) exp = Next(exp)
return exp
return phi
def __call__(self, trace, time=0): def _walk(exp):
return mtl.pointwise_sat(self)(trace, time)
@property
def children(self):
return tuple()
def walk(self):
"""Walk of the AST.""" """Walk of the AST."""
pop = deque.pop pop = deque.pop
children = deque([self]) children = deque([exp])
while len(children) > 0: while len(children) > 0:
node = pop(children) node = pop(children)
yield node yield node
children.extend(node.children) children.extend(node.children)
@property
def params(self): def _params(exp):
def get_params(leaf): def get_params(leaf):
if isinstance(leaf, ModalOp): if isinstance(leaf, ModalOp):
if isinstance(leaf.interval[0], Param): if isinstance(leaf.interval[0], Param):
@ -73,82 +75,112 @@ class AST(object):
if isinstance(leaf.interval[1], Param): if isinstance(leaf.interval[1], Param):
yield leaf.interval[1] yield leaf.interval[1]
return set(fn.mapcat(get_params, self.walk())) return set(fn.mapcat(get_params, exp.walk()))
def set_params(self, val):
phi = param_lens(self)
return phi.modify(lambda x: float(val.get(x, val.get(str(x), x))))
@property def _set_symbols(node, val):
def atomic_predicates(self): children = tuple(_set_symbols(c, val) for c in node.children)
return set(AP_lens.collect()(self))
def inline_context(self, context): if hasattr(node, 'interval'):
phi, phi2 = self, None return node.evolve(
arg=children[0],
interval=_update_itvl(node.interval, val),
)
elif isinstance(node, AtomicPred):
return val.get(node.id, node)
elif hasattr(node, 'args'):
return node.evolve(args=children)
elif hasattr(node, 'arg'):
return node.evolve(arg=children[0])
return node
def update(ap):
return context.get(ap, ap)
def _inline_context(exp, context):
phi, phi2 = exp, None
while phi2 != phi: while phi2 != phi:
phi2, phi = phi, AP_lens.modify(update)(phi) phi2, phi = phi, _set_symbols(phi, context)
return phi return phi
def __hash__(self):
# TODO: compute hash based on contents def _atomic_predicates(exp):
return hash(repr(self)) return set(bind(exp).Recur(AtomicPred).collect())
class _Top(AST): class Param(NamedTuple):
__slots__ = () name: str
def __repr__(self):
return self.name
def ast_class(cls):
cls.__or__ = _or
cls.__and__ = _and
cls.__invert__ = _neg
cls.__call__ = _eval
cls.__rshift__ = _timeshift
cls.__getitem__ = _inline_context
cls.walk = _walk
cls.params = property(_params)
cls.atomic_predicates = property(_atomic_predicates)
cls.evolve = attr.evolve
if not hasattr(cls, "children"):
cls.children = property(lambda _: ())
return attr.s(frozen=True, auto_attribs=True, repr=False, slots=True)(cls)
def _update_itvl(itvl, lookup):
def _update_param(p):
if not isinstance(p, Param) or p.name not in lookup:
return p
val = lookup[p.name]
return val if isinstance(lookup, Param) else float(val)
return Interval(*map(_update_param, itvl))
@ast_class
class _Top:
def __repr__(self): def __repr__(self):
return "TRUE" return "TRUE"
def __invert__(self):
return BOT
class _Bot(AST):
__slots__ = ()
@ast_class
class _Bot:
def __repr__(self): def __repr__(self):
return "FALSE" return "FALSE"
def __invert__(self):
return TOP
TOP = _Top() TOP = _Top()
BOT = _Bot() BOT = _Bot()
class AtomicPred(namedtuple("AP", ["id"]), AST): @ast_class
__slots__ = () class AtomicPred:
id: str
def __repr__(self): def __repr__(self):
return f"{self.id}" return f"{self.id}"
def __hash__(self):
# TODO: compute hash based on contents
return hash(repr(self))
@property class Interval(NamedTuple):
def children(self): lower: Union[float, Param]
return tuple() upper: Union[float, Param]
class Interval(namedtuple('I', ['lower', 'upper'])):
__slots__ = ()
def __repr__(self): def __repr__(self):
return f"[{self.lower},{self.upper}]" return f"[{self.lower},{self.upper}]"
class NaryOpMTL(namedtuple('NaryOp', ['args']), AST): @ast_class
__slots__ = () class NaryOpMTL:
OP = "?" OP = "?"
args: "Node" # TODO: when 3.7 is more common replace with type union.
def __repr__(self): def __repr__(self):
return "(" + f" {self.OP} ".join(f"{x}" for x in self.args) + ")" return "(" + f" {self.OP} ".join(f"{x}" for x in self.args) + ")"
@ -159,28 +191,18 @@ class NaryOpMTL(namedtuple('NaryOp', ['args']), AST):
class Or(NaryOpMTL): class Or(NaryOpMTL):
__slots__ = ()
OP = "|" OP = "|"
def __hash__(self):
# TODO: compute hash based on contents
return hash(repr(self))
class And(NaryOpMTL): class And(NaryOpMTL):
__slots__ = ()
OP = "&" OP = "&"
def __hash__(self):
# TODO: compute hash based on contents
return hash(repr(self))
@ast_class
class ModalOp(namedtuple('ModalOp', ['interval', 'arg']), AST): class ModalOp:
__slots__ = ()
OP = '?' OP = '?'
interval: Interval
arg: "Node"
def __repr__(self): def __repr__(self):
if self.interval.lower == 0 and self.interval.upper == float('inf'): if self.interval.lower == 0 and self.interval.upper == float('inf'):
@ -193,25 +215,17 @@ class ModalOp(namedtuple('ModalOp', ['interval', 'arg']), AST):
class F(ModalOp): class F(ModalOp):
__slots__ = ()
OP = "< >" OP = "< >"
def __hash__(self):
# TODO: compute hash based on contents
return hash(repr(self))
class G(ModalOp): class G(ModalOp):
__slots__ = ()
OP = "[ ]" OP = "[ ]"
def __hash__(self):
# TODO: compute hash based on contents
return hash(repr(self))
@ast_class
class Until(namedtuple('ModalOp', ['arg1', 'arg2']), AST): class Until:
__slots__ = () arg1: "Node"
arg2: "Node"
def __repr__(self): def __repr__(self):
return f"({self.arg1} U {self.arg2})" return f"({self.arg1} U {self.arg2})"
@ -220,13 +234,10 @@ class Until(namedtuple('ModalOp', ['arg1', 'arg2']), AST):
def children(self): def children(self):
return (self.arg1, self.arg2) return (self.arg1, self.arg2)
def __hash__(self):
# TODO: compute hash based on contents
return hash(repr(self))
@ast_class
class Neg(namedtuple('Neg', ['arg']), AST): class Neg:
__slots__ = () arg: "Node"
def __repr__(self): def __repr__(self):
return f"~{self.arg}" return f"~{self.arg}"
@ -235,13 +246,10 @@ class Neg(namedtuple('Neg', ['arg']), AST):
def children(self): def children(self):
return (self.arg,) return (self.arg,)
def __hash__(self):
# TODO: compute hash based on contents
return hash(repr(self))
@ast_class
class Next(namedtuple('Next', ['arg']), AST): class Next:
__slots__ = () arg: "Node"
def __repr__(self): def __repr__(self):
return f"@{self.arg}" return f"@{self.arg}"
@ -250,30 +258,7 @@ class Next(namedtuple('Next', ['arg']), AST):
def children(self): def children(self):
return (self.arg,) return (self.arg,)
def __hash__(self):
# TODO: compute hash based on contents
return hash(repr(self))
class Param(namedtuple('Param', ['name']), AST):
__slots__ = ()
def __repr__(self):
return self.name
def __hash__(self):
# TODO: compute hash based on contents
return hash(repr(self))
@lru_cache()
def param_lens(phi, *, getter=False):
return bind(phi).Recur(Param)
def type_pred(*args): def type_pred(*args):
ast_types = set(args) ast_types = set(args)
return lambda x: type(x) in ast_types return lambda x: type(x) in ast_types
AP_lens = lens.Recur(AtomicPred)

View file

@ -16,17 +16,14 @@ FALSE_TRACE = const_trace(False)
def negate_trace(x): def negate_trace(x):
out = x.operation(TRUE_TRACE, op.xor) return x.operation(TRUE_TRACE, op.xor)
out.domain = x.domain
return out
def pointwise_sat(phi, dt=0.1): def pointwise_sat(phi, dt=0.1):
ap_names = [z.id for z in phi.atomic_predicates] ap_names = [z.id for z in phi.atomic_predicates]
def _eval_mtl(x, t=0): def _eval_mtl(x, t=0):
evaluated = fn.project(x, ap_names) return bool(eval_mtl(phi, dt)(x)[t])
return bool(eval_mtl(phi, dt)(evaluated)[t])
return _eval_mtl return _eval_mtl
@ -37,9 +34,7 @@ def eval_mtl(phi, dt):
def or_traces(xs): def or_traces(xs):
out = orf(*xs) return orf(*xs)
out.domain = xs[0].domain
return out
@eval_mtl.register(mtl.Or) @eval_mtl.register(mtl.Or)
@ -55,9 +50,7 @@ def eval_mtl_or(phi, dt):
def and_traces(xs): def and_traces(xs):
out = andf(*xs) return andf(*xs)
out.domain = xs[0].domain
return out
@eval_mtl.register(mtl.And) @eval_mtl.register(mtl.And)
@ -73,6 +66,10 @@ def eval_mtl_and(phi, dt):
def apply_until(y): def apply_until(y):
if len(y) == 1:
left, right = y.first_value()
yield (0, min(left, right))
return
periods = list(y.iterperiods()) periods = list(y.iterperiods())
phi2_next = False phi2_next = False
for t, _, (phi1, phi2) in periods[::-1]: for t, _, (phi1, phi2) in periods[::-1]:
@ -87,7 +84,7 @@ def eval_mtl_until(phi, dt):
def _eval(x): def _eval(x):
y1, y2 = f1(x), f2(x) y1, y2 = f1(x), f2(x)
y = y1.operation(y2, lambda a, b: (a, b)) y = y1.operation(y2, lambda a, b: (a, b))
out = traces.TimeSeries(apply_until(y), domain=y1.domain) out = traces.TimeSeries(apply_until(y))
out.compact() out.compact()
return out return out
@ -111,7 +108,7 @@ def eval_mtl_g(phi, dt):
def process_intervals(x): def process_intervals(x):
# Need to add last interval # Need to add last interval
intervals = fn.chain(x.iterintervals(), [( intervals = fn.chain(x.iterintervals(), [(
x.last(), x.first_item(),
(float('inf'), None), (float('inf'), None),
)]) )])
for (start, val), (end, val2) in intervals: for (start, val), (end, val2) in intervals:
@ -121,10 +118,10 @@ def eval_mtl_g(phi, dt):
if b == float('inf'): if b == float('inf'):
def _eval(x): def _eval(x):
y = f(x) y = f(x).slice(a, b)
val = len(y.slice(a, b)) == 1 and y[a] y.compact()
return traces.TimeSeries( val = len(y) == 1 and y[a]
[(y.domain.start(), val)], domain=y.domain) return const_trace(val)
else: else:
def _eval(x): def _eval(x):
y = f(x) y = f(x)
@ -132,7 +129,8 @@ def eval_mtl_g(phi, dt):
return y return y
out = traces.TimeSeries(process_intervals(y)).slice( out = traces.TimeSeries(process_intervals(y)).slice(
y.domain.start(), y.domain.end()) y.first_key(), float('inf')
)
out.compact() out.compact()
return out return out
@ -158,7 +156,7 @@ def eval_mtl_next(phi, dt):
def _eval(x): def _eval(x):
y = f(x) y = f(x)
out = traces.TimeSeries(((t - dt, v) for t, v in y)) out = traces.TimeSeries(((t - dt, v) for t, v in y))
out = out.slice(y.domain.start(), y.domain.end()) out = out.slice(0, float('inf'))
out.compact() out.compact()
return out return out

View file

@ -10,7 +10,7 @@ oo = float('inf')
def get_times(x, tau, lo, hi): def get_times(x, tau, lo, hi):
end = min(v.domain.end() for v in x.values()) end = min(v.last_key() for v in x.values())
lo, hi = map(float, (lo, hi)) lo, hi = map(float, (lo, hi))
hi = hi + tau if hi + tau <= end else end hi = hi + tau if hi + tau <= end else end

View file

@ -59,7 +59,7 @@ class MTLVisitor(NodeVisitor):
self.default_interval = ast.Interval(0.0, H) self.default_interval = ast.Interval(0.0, H)
def binop_inner(self, _, children): def binop_inner(self, _, children):
if isinstance(children[0], ast.AST): if not isinstance(children[0], list):
return children return children
((left, _, _, _, right),) = children ((left, _, _, _, right),) = children

View file

@ -23,23 +23,17 @@ TODO: Automatically generate input time series.
""" """
x = { x = {
"x": "ap1": traces.TimeSeries([(0, True), (0.1, True), (0.2, False)]),
traces.TimeSeries([(0, 1), (0.1, 1), (0.2, 4)], domain=(0, 10)),
"y":
traces.TimeSeries([(0, 2), (0.1, 4), (0.2, 2)], domain=(0, 10)),
"ap1":
traces.TimeSeries([(0, True), (0.1, True), (0.2, False)], domain=(0, 10)),
"ap2": "ap2":
traces.TimeSeries([(0, False), (0.2, True), (0.5, False)], domain=(0, 10)), traces.TimeSeries([(0, False), (0.2, True), (0.5, False)]),
"ap3": "ap3":
traces.TimeSeries([(0, True), (0.1, True), (0.3, False)], domain=(0, 10)), traces.TimeSeries([(0, True), (0.1, True), (0.3, False)]),
"ap4": "ap4":
traces.TimeSeries( traces.TimeSeries([(0, False), (0.1, False), (0.3, False)]),
[(0, False), (0.1, False), (0.3, False)], domain=(0, 10)),
"ap5": "ap5":
traces.TimeSeries([(0, False), (0.1, False), (0.3, True)], domain=(0, 10)), traces.TimeSeries([(0, False), (0.1, False), (0.3, True)]),
"ap6": "ap6":
traces.TimeSeries([(0, True)], domain=(0, 10)), traces.TimeSeries([(0, True), (float('inf'), True)]),
} }
@ -118,7 +112,7 @@ def test_fastboolean_smoketest():
assert not mtl_eval(x, 0) assert not mtl_eval(x, 0)
with raises(NotImplementedError): with raises(NotImplementedError):
mtl.fastboolean_eval.pointwise_sat(mtl.ast.AST()) mtl.fastboolean_eval.pointwise_sat(None)
def test_callable_interface(): def test_callable_interface():

View file

@ -10,11 +10,7 @@ def test_params1(a, b, c):
phi = mtl.parse('G[a, b] x') phi = mtl.parse('G[a, b] x')
assert {x.name for x in phi.params} == {'a', 'b'} assert {x.name for x in phi.params} == {'a', 'b'}
phi2 = phi.set_params({'a': a, 'b': b}) phi2 = phi[{'a': a, 'b': b}]
assert phi2.params == set() assert phi2.params == set()
assert phi2 == mtl.parse(f'G[{a}, {b}](x)') assert phi2 == mtl.parse(f'G[{a}, {b}](x)')
@given(MetricTemporalLogicStrategy)
def test_hash_stable(phi):
assert hash(phi) == hash(mtl.parse(str(phi)))

View file

@ -1,19 +1,26 @@
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
from hypothesis import event, given from hypothesis import event, given
from traces import TimeSeries
import mtl import mtl
from mtl.hypothesis import MetricTemporalLogicStrategy from mtl.hypothesis import MetricTemporalLogicStrategy
@given(MetricTemporalLogicStrategy) TS = {
def test_invertable_repr(phi): "ap1": TimeSeries([(0, True), (0.1, True), (0.2, False)]),
event(str(phi)) "ap2": TimeSeries([(0, False), (0.2, True), (0.5, False)]),
assert str(phi) == str(mtl.parse(str(phi))) "ap3": TimeSeries([(0, True), (0.1, True), (0.3, False)]),
"ap4": TimeSeries([(0, False), (0.1, False), (0.3, False)]),
"ap5": TimeSeries([(0, False), (0.1, False), (0.3, True)]),
}
@given(MetricTemporalLogicStrategy) @given(MetricTemporalLogicStrategy)
def test_hash_inheritance(phi): def test_stablizing_repr(phi):
assert hash(repr(phi)) == hash(phi) for _ in range(10):
phi, phi2 = mtl.parse(str(phi)), phi
assert phi == phi2
def test_sugar_smoke(): def test_sugar_smoke():

View file

@ -5,43 +5,25 @@ from hypothesis import given
from pytest import raises from pytest import raises
CONTEXT = { CONTEXT = {
mtl.parse('ap1'): mtl.parse('x'), 'ap1': mtl.parse('x'),
mtl.parse('ap2'): mtl.parse('(y U z)'), 'ap2': mtl.parse('(y U z)'),
mtl.parse('ap3'): mtl.parse('x'), 'ap3': mtl.parse('x'),
mtl.parse('ap4'): mtl.parse('(x -> y -> z)'), 'ap4': mtl.parse('(x -> y -> z)'),
mtl.parse('ap5'): mtl.parse('(ap1 <-> y <-> z)'), 'ap5': mtl.parse('(ap1 <-> y <-> z)'),
} }
APS = set(CONTEXT.keys()) APS = set(CONTEXT.keys())
@given(MetricTemporalLogicStrategy)
def test_f_neg_or_canonical_form(phi):
phi2 = mtl.utils.f_neg_or_canonical_form(phi)
phi3 = mtl.utils.f_neg_or_canonical_form(phi2)
assert phi2 == phi3
assert not any(
isinstance(x, (mtl.ast.G, mtl.ast.And)) for x in phi2.walk())
def test_f_neg_or_canonical_form_not_implemented():
with raises(NotImplementedError):
mtl.utils.f_neg_or_canonical_form(mtl.ast.AST())
def test_inline_context_rigid(): def test_inline_context_rigid():
phi = mtl.parse('G ap1') phi = mtl.parse('G ap1')
phi2 = phi.inline_context(CONTEXT) assert phi[CONTEXT] == mtl.parse('G x')
assert phi2 == mtl.parse('G x')
phi = mtl.parse('G ap5') phi = mtl.parse('G ap5')
phi2 = phi.inline_context(CONTEXT) assert phi[CONTEXT] == mtl.parse('G(x <-> y <-> z)')
assert phi2 == mtl.parse('G(x <-> y <-> z)')
@given(MetricTemporalLogicStrategy) @given(MetricTemporalLogicStrategy)
def test_inline_context(phi): def test_inline_context(phi):
phi2 = phi.inline_context(CONTEXT) assert not (APS & phi[CONTEXT].atomic_predicates)
assert not (APS & phi2.atomic_predicates)
@given(MetricTemporalLogicStrategy, MetricTemporalLogicStrategy) @given(MetricTemporalLogicStrategy, MetricTemporalLogicStrategy)

View file

@ -13,35 +13,8 @@ from mtl.ast import (And, F, G, Interval, Neg, Or, Next, Until,
oo = float('inf') oo = float('inf')
def f_neg_or_canonical_form(phi): def const_trace(x):
if isinstance(phi, (AtomicPred, _Top, _Bot)): return traces.TimeSeries([(0, x), (oo, x)])
return phi
children = [f_neg_or_canonical_form(s) for s in phi.children]
if isinstance(phi, (And, G)):
children = [Neg(s) for s in children]
children = tuple(sorted(children, key=str))
if isinstance(phi, Or):
return Or(children)
elif isinstance(phi, And):
return Neg(Or(children))
elif isinstance(phi, Neg):
return Neg(*children)
elif isinstance(phi, Next):
return Next(*children)
elif isinstance(phi, Until):
return Until(*children)
elif isinstance(phi, F):
return F(phi.interval, *children)
elif isinstance(phi, G):
return Neg(F(phi.interval, *children))
else:
raise NotImplementedError
def const_trace(x, start=0):
return traces.TimeSeries([(start, x)], domain=traces.Domain(start, oo))
def require_discretizable(func): def require_discretizable(func):
@ -85,9 +58,9 @@ def _discretize(phi, dt, horizon):
if not isinstance(phi, (F, G, Until)): if not isinstance(phi, (F, G, Until)):
children = tuple(_discretize(arg, dt, horizon) for arg in phi.children) children = tuple(_discretize(arg, dt, horizon) for arg in phi.children)
if isinstance(phi, (And, Or)): if isinstance(phi, (And, Or)):
return bind(phi).args.set(children) return phi.evolve(args=children)
elif isinstance(phi, (Neg, Next)): elif isinstance(phi, (Neg, Next)):
return bind(phi).arg.set(children[0]) return phi.evolve(arg=children[0])
raise NotImplementedError raise NotImplementedError
@ -120,9 +93,9 @@ def _distribute_next(phi, i=0):
children = tuple(_distribute_next(c, i) for c in phi.children) children = tuple(_distribute_next(c, i) for c in phi.children)
if isinstance(phi, (And, Or)): if isinstance(phi, (And, Or)):
return bind(phi).args.set(children) return phi.evolve(args=children)
elif isinstance(phi, (Neg, Next)): elif isinstance(phi, (Neg, Next)):
return bind(phi).arg.set(children[0]) return phi.evolve(arg=children[0])
def is_discretizable(phi, dt): def is_discretizable(phi, dt):