adding tests for lexicographic parameteric synth

This commit is contained in:
Marcell Vazquez-Chanlatte 2016-10-09 21:55:48 -07:00
parent 673ede60e3
commit 28f755edc5
2 changed files with 30 additions and 3 deletions

View file

@ -79,7 +79,6 @@ def binsearch(stleval, *, tol=1e-3, lo, hi, polarity):
while abs(r) > tol and hi - lo > tol: while abs(r) > tol and hi - lo > tol:
mid = lo + (hi - lo) / 2 mid = lo + (hi - lo) / 2
r = stleval(mid) r = stleval(mid)
print(lo, mid, hi, r)
if polarity: # swap direction if polarity: # swap direction
r *= -1 r *= -1
if r < 0: if r < 0:
@ -97,10 +96,8 @@ def lex_param_project(stl, x, *, order, polarity, ranges, tol=1e-3):
def stleval_fact(var, val): def stleval_fact(var, val):
l = lens(val)[var] l = lens(val)[var]
return lambda p: pointwise_robustness(set_params(stl, l.set(p)))(x, 0) return lambda p: pointwise_robustness(set_params(stl, l.set(p)))(x, 0)
for var in order: for var in order:
print(val)
stleval = stleval_fact(var, val) stleval = stleval_fact(var, val)
lo, hi = ranges[var] lo, hi = ranges[var]
_, param = binsearch(stleval, lo=lo, hi=hi, tol=tol, polarity=polarity[var]) _, param = binsearch(stleval, lo=lo, hi=hi, tol=tol, polarity=polarity[var])

30
test_synth.py Normal file
View file

@ -0,0 +1,30 @@
import stl
import stl.robustness
import pandas as pd
from nose2.tools import params
import unittest
from sympy import Symbol
oo = float('inf')
ex1 = ("A > a?", ("a?",), {"a?": (0, 10)}, {"a?": True}, {"a?": 1})
ex1 = ("F[0, b?](A > a?)", ("a?", "b?"), {"a?": (0, 10), "b?": (0, 10)},
{"a?": True, "b?": False}, {"a?": 4, "b?": 0.2})
x = pd.DataFrame([[1,2], [1,4], [4,2]], index=[0,0.1,0.2],
columns=["A", "B"])
class TestSTLRobustness(unittest.TestCase):
@params(ex1)
def test_lex_synth(self, phi_str, order, ranges, polarity, val):
phi = stl.parse(phi_str)
val2 = stl.robustness.lex_param_project(
phi, x, order=order, ranges=ranges, polarity=polarity)
phi = stl.robustness.set_params(phi, val)
stl_eval = stl.robustness.pointwise_robustness(phi)
self.assertAlmostEqual(stl_eval(x, 0), 0)
for var in order:
self.assertAlmostEqual(val2[var], val[var], delta=0.01)