precompute lineq timeseries during boolean evaluation

This commit is contained in:
Marcell Vazquez-Chanlatte 2017-04-24 20:17:27 -07:00
parent 8f5035a9e3
commit 00ec325589
3 changed files with 72 additions and 24 deletions

View file

@ -8,23 +8,32 @@ import funcy as fn
from lenses import lens
import stl.ast
import stl
oo = float('inf')
def pointwise_sat(phi):
ap_names = [z.id.name for z in stl.utils.AP_lens(phi).get_all()]
def _eval_stl(x, t):
evaluated = stl.utils.eval_lineqs(phi, x)
evaluated.update(fn.project(x, ap_names))
return eval_stl(phi)(evaluated, t)
return _eval_stl
@singledispatch
def pointwise_sat(stl):
def eval_stl(stl):
raise NotImplementedError
@pointwise_sat.register(stl.Or)
@eval_stl.register(stl.Or)
def _(stl):
fs = [pointwise_sat(arg) for arg in stl.args]
fs = [eval_stl(arg) for arg in stl.args]
return lambda x, t: any(f(x, t) for f in fs)
@pointwise_sat.register(stl.And)
@eval_stl.register(stl.And)
def _(stl):
fs = [pointwise_sat(arg) for arg in stl.args]
fs = [eval_stl(arg) for arg in stl.args]
return lambda x, t: all(f(x, t) for f in fs)
@ -33,7 +42,10 @@ def get_times(x, tau, lo=None, hi=None):
lo = min(v.first()[0] for v in x.values())
if hi is None or hi is oo:
hi = max(v.last()[0] for v in x.values())
try:
end = min(v.domain.end() for v in x.values())
except:
import pdb; pdb.set_trace()
hi = hi + tau if hi + tau <= end else end
lo = lo + tau if lo + tau <= end else end
@ -46,10 +58,10 @@ def get_times(x, tau, lo=None, hi=None):
return sorted(set(fn.pluck(0, all_times)))
@pointwise_sat.register(stl.Until)
@eval_stl.register(stl.Until)
def _(stl):
def _until(x, t):
f1, f2 = pointwise_sat(stl.arg1), pointwise_sat(stl.arg2)
f1, f2 = eval_stl(stl.arg1), eval_stl(stl.arg2)
for tau in get_times(x, t):
if not f1(x, tau):
return f2(x, tau)
@ -65,23 +77,23 @@ def eval_unary_temporal_op(phi, always=True):
return lambda x, t: retval
if hi == lo:
return lambda x, t: f(x, t)
f = pointwise_sat(phi.arg)
f = eval_stl(phi.arg)
return lambda x, t: fold(f(x, tau) for tau in get_times(x, t, lo, hi))
@pointwise_sat.register(stl.F)
@eval_stl.register(stl.F)
def _(phi):
return eval_unary_temporal_op(phi, always=False)
@pointwise_sat.register(stl.G)
@eval_stl.register(stl.G)
def _(phi):
return eval_unary_temporal_op(phi, always=True)
@pointwise_sat.register(stl.Neg)
@eval_stl.register(stl.Neg)
def _(stl):
f = pointwise_sat(stl.arg)
f = eval_stl(stl.arg)
return lambda x, t: not f(x, t)
@ -94,22 +106,20 @@ op_lookup = {
}
@pointwise_sat.register(stl.AtomicPred)
@eval_stl.register(stl.AtomicPred)
def _(stl):
return lambda x, t: x[str(stl.id)][t]
@pointwise_sat.register(stl.LinEq)
def _(stl):
op = op_lookup[stl.op]
return lambda x, t: op(eval_terms(stl, x, t), stl.const)
@eval_stl.register(stl.LinEq)
def _(lineq):
return lambda x, t: x[lineq][t]
def eval_terms(lineq, x, t):
psi = lens(lineq).terms.each_().modify(eval_term(x, t))
return sum(psi.terms)
terms = lens(lineq).terms.each_().get_all()
return sum(eval_term(term, x, t) for term in terms)
def eval_term(x, t):
# TODO(lift interpolation much higher)
return lambda term: term.coeff*x[term.id.name][t]
def eval_term(term, x, t):
return float(term.coeff)*x[term.id.name][t]

View file

@ -1,7 +1,7 @@
import operator as op
from stl.utils import set_params, param_lens
from stl import pointwise_sat
from stl.boolean_eval import pointwise_sat
from lenses import lens

View file

@ -6,6 +6,7 @@ from functools import reduce
from lenses import lens, Lens
import funcy as fn
import sympy
import traces
import stl.ast
from stl.ast import (LinEq, And, Or, NaryOpSTL, F, G, Interval, Neg,
@ -138,6 +139,43 @@ def inline_context(phi, context):
# TODO: this is hack to flatten the AST. Fix!
return stl.parse(str(phi))
op_lookup = {
">": op.gt,
">=": op.ge,
"<": op.lt,
"<=": op.le,
"=": op.eq,
}
def get_times(x):
times = set.union(*({t for t, _ in v.items()} for v in x.values()))
return sorted(times)
def eval_lineq(lineq, x, times=None, compact=True):
if times is None:
times = get_times(x)
def eval_term(term, t):
return float(term.coeff)*x[term.id.name][t]
output = traces.TimeSeries(domain=traces.Domain(times[0], times[-1]))
terms = lens(lineq).terms.each_().get_all()
for t in times:
lhs = sum(eval_term(term, t) for term in terms)
output[t] = op_lookup[lineq.op](lhs, lineq.const)
if compact:
output.compact()
return output
def eval_lineqs(phi, x, times=None):
if times is None:
times = get_times(x)
lineqs = set(lineq_lens(phi).get_all())
return {lineq: eval_lineq(lineq, x, times=times) for lineq in lineqs}
# EDSL
def alw(phi, *, lo, hi):