Initial commit

This commit is contained in:
Yentl Van Tendeloo 2016-08-04 17:38:43 +02:00
commit 66a6860316
407 changed files with 1254365 additions and 0 deletions

View file

@ -0,0 +1,248 @@
import sys
sys.path.append('../../src/')
from infinity import *
from DEVS import AtomicDEVS, CoupledDEVS
from math import exp
T_AMBIENT = 27.0
T_IGNITE = 300.0
T_GENERATE = 500.0
T_BURNED = 60.0
TIMESTEP = 0.01
PH_INACTIVE = 'inactive'
PH_UNBURNED = 'unburned'
PH_BURNING = 'burning'
PH_BURNED = 'burned'
RADIUS = 3
TMP_DIFF = 1.0
#########################################
## Map layout
#########################################
## x_max = 6, y_max = 6
#########################################
## 0 1 2 3 4 5 6
## 0
## 1
## 2
## 3
## 4
## 5
## 6
#########################################
#########################################
def getPhaseFor(temp, phase):
if temp > T_IGNITE or (temp > T_BURNED and phase == PH_BURNING):
return PH_BURNING
elif temp < T_BURNED and phase == PH_BURNING:
return PH_BURNED
else:
return PH_UNBURNED
class CellState(object):
# Simply here for future necessity
def __init__(self, temp):
self.temperature = temp
self.igniteTime = float('inf')
self.currentTime = 0.0
self.phase = PH_INACTIVE
self.surroundingTemps = [T_AMBIENT] * 4
self.oldTemperature = temp
def __str__(self):
return "%s (T: %f)" % (self.phase, self.temperature)
def copy(self):
a = CellState(self.temperature)
a.igniteTime = self.igniteTime
a.currentTime = self.currentTime
a.phase = self.phase
a.surroundingTemps = list(self.surroundingTemps)
a.oldTemperature = self.oldTemperature
return a
def __eq__(self, other):
return self.temperature == other.temperature and self.igniteTime == other.igniteTime and self.currentTime == other.currentTime and self.phase == other.phase and self.surroundingTemps == other.surroundingTemps and self.oldTemperature == other.oldTemperature
def toCellState(self):
return self.temperature
class Cell(AtomicDEVS):
def __init__(self, x, y, x_max, y_max):
AtomicDEVS.__init__(self, "Cell(%d, %d)" % (x, y))
self.state = CellState(T_AMBIENT)
# For Cell DEVS tracing
self.x = x
self.y = y
self.inports = [self.addInPort("in_N"), self.addInPort("in_E"), self.addInPort("in_S"), self.addInPort("in_W"), self.addInPort("in_G")]
self.outport = self.addOutPort("out_T")
self.taMap = {PH_INACTIVE: INFINITY, PH_UNBURNED: 1.0, PH_BURNING: 1.0, PH_BURNED: INFINITY}
def preActivityCalculation(self):
return None
def postActivityCalculation(self, _):
return self.state.temperature - T_AMBIENT
def intTransition(self):
#for _ in range(4100):
# pass
# First check for the surrounding cells and whether we are on a border or not
self.state.currentTime += self.timeAdvance()
# OK, now we have a complete list
if abs(self.state.temperature - self.state.oldTemperature) > TMP_DIFF:
self.state.oldTemperature = self.state.temperature
if self.state.phase == PH_BURNED:
# Don't do anything as we are already finished
return self.state
elif self.state.phase == PH_BURNING:
newTemp = 0.98689 * self.state.temperature + 0.0031 * (sum(self.state.surroundingTemps)) + 2.74 * exp(-0.19 * (self.state.currentTime * TIMESTEP - self.state.igniteTime)) + 0.213
elif self.state.phase == PH_UNBURNED:
newTemp = 0.98689 * self.state.temperature + 0.0031 * (sum(self.state.surroundingTemps)) + 0.213
newPhase = getPhaseFor(newTemp, self.state.phase)
if newPhase == PH_BURNED:
newTemp = T_AMBIENT
if self.state.phase == PH_UNBURNED and newPhase == PH_BURNING:
self.state.igniteTime = self.state.currentTime * TIMESTEP
self.state.phase = newPhase
self.state.temperature = newTemp
return self.state
def extTransition(self, inputs):
# NOTE we can make the assumption that ALL temperatures are received simultaneously, due to Parallel DEVS being used
self.state.currentTime += self.elapsed
if self.inports[-1] in inputs:
# A temperature from the generator, so simply set our own temperature
self.state.temperature = inputs[self.inports[-1]][0]
self.state.phase = getPhaseFor(self.state.temperature, self.state.phase)
if self.state.phase == PH_BURNING:
self.state.igniteTime = self.state.currentTime * TIMESTEP
else:
for num, inport in enumerate(self.inports[:4]):
self.state.surroundingTemps[num] = inputs.get(inport, [self.state.surroundingTemps[num]])[0]
if self.state.phase == PH_INACTIVE:
self.state.phase = PH_UNBURNED
return self.state
def outputFnc(self):
if abs(self.state.temperature - self.state.oldTemperature) > TMP_DIFF:
return {self.outport: [self.state.temperature]}
else:
return {}
def timeAdvance(self):
return self.taMap[self.state.phase]
class Junk(object):
def __init__(self):
self.status = True
def __str__(self):
return "Generator"
def copy(self):
a = Junk()
a.status = self.status
return a
class Generator(AtomicDEVS):
def __init__(self, levels):
AtomicDEVS.__init__(self, "Generator")
self.outports = []
for i in range(levels):
self.outports.append(self.addOutPort("out_" + str(i)))
self.state = Junk()
def intTransition(self):
self.state.status = False
return self.state
def outputFnc(self):
output = {}
for i in range(len(self.outports)):
output[self.outports[i]] = [T_AMBIENT + T_GENERATE/(2**i)]
return output
def timeAdvance(self):
if self.state.status:
return 1.0
else:
return INFINITY
def preActivityCalculation(self):
return None
def postActivityCalculation(self, _):
return 0.0
class FireSpread(CoupledDEVS):
def putGenerator(self, x, y):
CENTER = (x, y)
for level in range(RADIUS):
# Left side
y = level
for x in range(-level, level + 1, 1):
self.connectPorts(self.generator.outports[level], self.cells[CENTER[0] + x][CENTER[1] + y].inports[-1])
self.connectPorts(self.generator.outports[level], self.cells[CENTER[0] + x][CENTER[1] - y].inports[-1])
x = level
for y in range(-level + 1, level, 1):
self.connectPorts(self.generator.outports[level], self.cells[CENTER[0] + x][CENTER[1] + y].inports[-1])
self.connectPorts(self.generator.outports[level], self.cells[CENTER[0] - x][CENTER[1] + y].inports[-1])
def __init__(self, x_max, y_max):
CoupledDEVS.__init__(self, "FireSpread")
self.cells = []
try:
from mpi4py import MPI
nodes = MPI.COMM_WORLD.Get_size()
except ImportError:
nodes = 1
node = 0
totalCount = x_max * y_max
counter = 0
for x in range(x_max):
row = []
for y in range(y_max):
if nodes == 1:
node = 0
elif x <= x_max/2 and y < y_max/2:
node = 0
elif x <= x_max/2 and y > y_max/2:
node = 1
elif x > x_max/2 and y < y_max/2:
node = 2
elif x > x_max/2 and y > y_max/2:
node = 3
row.append(self.addSubModel(Cell(x, y, x_max, y_max), node))
self.cells.append(row)
counter += 1
# Everything is now constructed, so connect the ports now
self.generator = self.addSubModel(Generator(RADIUS))
#self.putGenerator(2, 2)
#self.putGenerator(2, y_max-3)
#self.putGenerator(x_max-3, 2)
#self.putGenerator(x_max-3, y_max-3)
self.putGenerator(5, 5)
for x in range(x_max):
for y in range(y_max):
if x != 0:
self.connectPorts(self.cells[x][y].outport, self.cells[x-1][y].inports[2])
if y != y_max - 1:
self.connectPorts(self.cells[x][y].outport, self.cells[x][y+1].inports[1])
if x != x_max - 1:
self.connectPorts(self.cells[x][y].outport, self.cells[x+1][y].inports[3])
if y != 0:
self.connectPorts(self.cells[x][y].outport, self.cells[x][y-1].inports[0])