fix!: add explicit interpolation method for more functions

This commit is contained in:
Anand Balakrishnan 2023-10-04 15:50:25 -07:00
parent f97d593926
commit 91441d4d3f
7 changed files with 185 additions and 110 deletions

View file

@ -1,29 +1,28 @@
use std::cmp::Ordering; use std::cmp::Ordering;
use super::interpolation::Linear;
use super::traits::SignalPartialOrd; use super::traits::SignalPartialOrd;
use super::{InterpolationMethod, Signal}; use super::{InterpolationMethod, Signal};
impl<T> SignalPartialOrd for Signal<T> impl<T> SignalPartialOrd<T> for Signal<T>
where where
T: PartialOrd + Clone, T: PartialOrd + Clone,
Linear: InterpolationMethod<T>,
{ {
fn signal_cmp<F>(&self, other: &Self, op: F) -> Option<Signal<bool>> fn signal_cmp<F, I>(&self, other: &Self, op: F) -> Option<Signal<bool>>
where where
F: Fn(Ordering) -> bool, F: Fn(Ordering) -> bool,
I: InterpolationMethod<T>,
{ {
// This has to be manually implemented and cannot use the apply2 functions. // This has to be manually implemented and cannot use the apply2 functions.
// This is because if we have two signals that cross each other, then there is // This is because if we have two signals that cross each other, then there is
// an intermediate point where the two signals are equal. This point must be // an intermediate point where the two signals are equal. This point must be
// added to the signal appropriately. // added to the signal appropriately.
// the union of the sample points in self and other // the union of the sample points in self and other
let sync_points = self.sync_with_intersection::<Linear>(other)?; let sync_points = self.sync_with_intersection::<I>(other)?;
let sig: Option<Signal<bool>> = sync_points let sig: Option<Signal<bool>> = sync_points
.into_iter() .into_iter()
.map(|t| { .map(|t| {
let lhs = self.interpolate_at::<Linear>(t).unwrap(); let lhs = self.interpolate_at::<I>(t).unwrap();
let rhs = other.interpolate_at::<Linear>(t).unwrap(); let rhs = other.interpolate_at::<I>(t).unwrap();
let cmp = lhs.partial_cmp(&rhs); let cmp = lhs.partial_cmp(&rhs);
cmp.map(|v| (t, op(v))) cmp.map(|v| (t, op(v)))
}) })
@ -35,16 +34,18 @@ where
impl<T> Signal<T> impl<T> Signal<T>
where where
T: PartialOrd + Clone, T: PartialOrd + Clone,
Linear: InterpolationMethod<T>,
{ {
/// Compute the time-wise min of two signals /// Compute the time-wise min of two signals
pub fn min(&self, other: &Self) -> Self { pub fn min<I>(&self, other: &Self) -> Self
let time_points = self.sync_with_intersection::<Linear>(other).unwrap(); where
I: InterpolationMethod<T>,
{
let time_points = self.sync_with_intersection::<I>(other).unwrap();
time_points time_points
.into_iter() .into_iter()
.map(|t| { .map(|t| {
let lhs = self.interpolate_at::<Linear>(t).unwrap(); let lhs = self.interpolate_at::<I>(t).unwrap();
let rhs = other.interpolate_at::<Linear>(t).unwrap(); let rhs = other.interpolate_at::<I>(t).unwrap();
if lhs < rhs { if lhs < rhs {
(t, lhs) (t, lhs)
} else { } else {
@ -55,13 +56,16 @@ where
} }
/// Compute the time-wise max of two signals /// Compute the time-wise max of two signals
pub fn max(&self, other: &Self) -> Self { pub fn max<I>(&self, other: &Self) -> Self
let time_points = self.sync_with_intersection::<Linear>(other).unwrap(); where
I: InterpolationMethod<T>,
{
let time_points = self.sync_with_intersection::<I>(other).unwrap();
time_points time_points
.into_iter() .into_iter()
.map(|t| { .map(|t| {
let lhs = self.interpolate_at::<Linear>(t).unwrap(); let lhs = self.interpolate_at::<I>(t).unwrap();
let rhs = other.interpolate_at::<Linear>(t).unwrap(); let rhs = other.interpolate_at::<I>(t).unwrap();
if lhs > rhs { if lhs > rhs {
(t, lhs) (t, lhs)
} else { } else {

View file

@ -43,10 +43,10 @@ impl<T> Signal<T> {
pub fn sub<U, I>(&self, other: &Signal<T>) -> Signal<U> pub fn sub<U, I>(&self, other: &Signal<T>) -> Signal<U>
where where
for<'t> &'t T: core::ops::Sub<Output = U>, for<'t> &'t T: core::ops::Sub<Output = U>,
T: Clone, T: Clone + PartialOrd,
I: InterpolationMethod<T>, I: InterpolationMethod<T>,
{ {
self.binary_op::<_, _, I>(other, |u, v| u - v) self.binary_op_with_intersection::<_, _, I>(other, |u, v| u - v)
} }
/// Perform sample-wise division of the two signals. /// Perform sample-wise division of the two signals.
@ -86,7 +86,7 @@ impl<T> Signal<T> {
T: Clone + PartialOrd, T: Clone + PartialOrd,
I: InterpolationMethod<T>, I: InterpolationMethod<T>,
{ {
self.binary_op::<_, _, I>(other, |u, v| if u < v { v - u } else { u - v }) self.binary_op_with_intersection::<_, _, I>(other, |u, v| if u < v { v - u } else { u - v })
} }
} }

View file

@ -3,19 +3,17 @@ use core::time::Duration;
use itertools::Itertools; use itertools::Itertools;
use super::interpolation::Linear;
use super::{InterpolationMethod, Signal}; use super::{InterpolationMethod, Signal};
impl<T> Signal<T> impl<T> Signal<T>
where where
T: Copy, T: Copy,
Linear: InterpolationMethod<T>,
{ {
/// Shift all samples in the signal by `delta` amount to the left. /// Shift all samples in the signal by `delta` amount to the left.
/// ///
/// This essentially filters out all samples with time points greater than `delta`, /// This essentially filters out all samples with time points greater than `delta`,
/// and subtracts `delta` from the rest of the time points. /// and subtracts `delta` from the rest of the time points.
pub fn shift_left(&self, delta: Duration) -> Self { pub fn shift_left<I: InterpolationMethod<T>>(&self, delta: Duration) -> Self {
match self { match self {
Signal::Sampled { values, time_points } => { Signal::Sampled { values, time_points } => {
// We want to skip any time points < delta, and subtract the rest. // We want to skip any time points < delta, and subtract the rest.
@ -34,7 +32,7 @@ where
if idx > 0 && first_t != &delta { if idx > 0 && first_t != &delta {
// The shifted signal will not start at 0, and we have a previous // The shifted signal will not start at 0, and we have a previous
// index to interpolate from. // index to interpolate from.
let v = self.interpolate_at::<Linear>(delta).unwrap(); let v = self.interpolate_at::<I>(delta).unwrap();
new_samples.push((Duration::ZERO, v)); new_samples.push((Duration::ZERO, v));
} }
// Shift the rest of the samples // Shift the rest of the samples

View file

@ -42,23 +42,27 @@ macro_rules! impl_signal_cmp {
($cmp:ident) => { ($cmp:ident) => {
paste! { paste! {
/// Compute the time-wise comparison of two signals /// Compute the time-wise comparison of two signals
fn [<signal_ $cmp>](&self, other: &Rhs) -> Option<Signal<bool>> { fn [<signal_ $cmp>]<I>(&self, other: &Rhs) -> Option<Signal<bool>>
self.signal_cmp(other, |ord| ord.[<is_ $cmp>]()) where
I: InterpolationMethod<T>
{
self.signal_cmp::<_, I>(other, |ord| ord.[<is_ $cmp>]())
} }
} }
}; };
} }
/// A time-wise partial ordering defined for signals /// A time-wise partial ordering defined for signals
pub trait SignalPartialOrd<Rhs = Self> { pub trait SignalPartialOrd<T, Rhs = Self> {
/// Compare two signals within each of their domains (using [`PartialOrd`]) and /// Compare two signals within each of their domains (using [`PartialOrd`]) and
/// apply the given function `op` to the ordering to create a signal. /// apply the given function `op` to the ordering to create a signal.
/// ///
/// This function returns `None` if the comparison isn't possible, namely, when /// This function returns `None` if the comparison isn't possible, namely, when
/// either of the signals are empty. /// either of the signals are empty.
fn signal_cmp<F>(&self, other: &Rhs, op: F) -> Option<Signal<bool>> fn signal_cmp<F, I>(&self, other: &Rhs, op: F) -> Option<Signal<bool>>
where where
F: Fn(Ordering) -> bool; F: Fn(Ordering) -> bool,
I: InterpolationMethod<T>;
impl_signal_cmp!(lt); impl_signal_cmp!(lt);
impl_signal_cmp!(le); impl_signal_cmp!(le);

View file

@ -65,6 +65,35 @@ impl<T> Signal<T> {
} }
} }
} }
pub(crate) fn binary_op_with_intersection<U, F, Interp>(&self, other: &Signal<T>, op: F) -> Signal<U>
where
T: Clone + PartialOrd,
F: Fn(&T, &T) -> U,
Interp: InterpolationMethod<T>,
{
use Signal::*;
match (self, other) {
// If either of the signals are empty, we return an empty signal.
(Empty, _) | (_, Empty) => Signal::Empty,
(Constant { value: v1 }, Constant { value: v2 }) => Signal::constant(op(v1, v2)),
(lhs, rhs) => {
// We determine the range of the signal (as the output signal can only be
// defined in the domain where both signals are defined).
let time_points = lhs.sync_with_intersection::<Interp>(rhs).unwrap();
// Now, at each of the merged time points, we sample each signal and operate on
// them
time_points
.into_iter()
.map(|t| {
let v1 = lhs.interpolate_at::<Interp>(t).unwrap();
let v2 = rhs.interpolate_at::<Interp>(t).unwrap();
(t, op(&v1, &v2))
})
.collect()
}
}
}
} }
fn partial_min<T>(a: T, b: T) -> Option<T> fn partial_min<T>(a: T, b: T) -> Option<T>

View file

@ -3,7 +3,6 @@ use std::time::Duration;
use argus_core::expr::*; use argus_core::expr::*;
use argus_core::prelude::*; use argus_core::prelude::*;
use argus_core::signals::interpolation::Linear;
use argus_core::signals::{InterpolationMethod, SignalPartialOrd}; use argus_core::signals::{InterpolationMethod, SignalPartialOrd};
use crate::semantics::QuantitativeSemantics; use crate::semantics::QuantitativeSemantics;
@ -30,12 +29,12 @@ impl BooleanSemantics {
let rhs = QuantitativeSemantics::eval_num_expr::<f64, NumI>(rhs, trace)?; let rhs = QuantitativeSemantics::eval_num_expr::<f64, NumI>(rhs, trace)?;
match op { match op {
Eq => lhs.signal_eq(&rhs).unwrap(), Eq => lhs.signal_eq::<NumI>(&rhs).unwrap(),
NotEq => lhs.signal_ne(&rhs).unwrap(), NotEq => lhs.signal_ne::<NumI>(&rhs).unwrap(),
Less { strict } if *strict => lhs.signal_lt(&rhs).unwrap(), Less { strict } if *strict => lhs.signal_lt::<NumI>(&rhs).unwrap(),
Less { strict: _ } => lhs.signal_le(&rhs).unwrap(), Less { strict: _ } => lhs.signal_le::<NumI>(&rhs).unwrap(),
Greater { strict } if *strict => lhs.signal_gt(&rhs).unwrap(), Greater { strict } if *strict => lhs.signal_gt::<NumI>(&rhs).unwrap(),
Greater { strict: _ } => lhs.signal_ge(&rhs).unwrap(), Greater { strict: _ } => lhs.signal_ge::<NumI>(&rhs).unwrap(),
} }
} }
BoolExpr::Not(Not { arg }) => { BoolExpr::Not(Not { arg }) => {
@ -72,16 +71,16 @@ impl BooleanSemantics {
} }
BoolExpr::Always(Always { arg, interval }) => { BoolExpr::Always(Always { arg, interval }) => {
let arg = Self::eval::<BoolI, NumI>(arg, trace)?; let arg = Self::eval::<BoolI, NumI>(arg, trace)?;
compute_always(arg, interval)? compute_always::<BoolI>(arg, interval)?
} }
BoolExpr::Eventually(Eventually { arg, interval }) => { BoolExpr::Eventually(Eventually { arg, interval }) => {
let arg = Self::eval::<BoolI, NumI>(arg, trace)?; let arg = Self::eval::<BoolI, NumI>(arg, trace)?;
compute_eventually(arg, interval)? compute_eventually::<BoolI>(arg, interval)?
} }
BoolExpr::Until(Until { lhs, rhs, interval }) => { BoolExpr::Until(Until { lhs, rhs, interval }) => {
let lhs = Self::eval::<BoolI, NumI>(lhs, trace)?; let lhs = Self::eval::<BoolI, NumI>(lhs, trace)?;
let rhs = Self::eval::<BoolI, NumI>(rhs, trace)?; let rhs = Self::eval::<BoolI, NumI>(rhs, trace)?;
compute_until(lhs, rhs, interval)? compute_until::<BoolI>(lhs, rhs, interval)?
} }
}; };
Ok(ret) Ok(ret)
@ -124,7 +123,10 @@ fn compute_oracle(arg: Signal<bool>, steps: usize) -> ArgusResult<Signal<bool>>
} }
/// Compute always for a signal /// Compute always for a signal
fn compute_always(signal: Signal<bool>, interval: &Interval) -> ArgusResult<Signal<bool>> { fn compute_always<I: InterpolationMethod<bool>>(
signal: Signal<bool>,
interval: &Interval,
) -> ArgusResult<Signal<bool>> {
if interval.is_empty() || interval.is_singleton() { if interval.is_empty() || interval.is_singleton() {
return Err(ArgusError::InvalidInterval { return Err(ArgusError::InvalidInterval {
reason: "interval is either empty or singleton", reason: "interval is either empty or singleton",
@ -143,9 +145,9 @@ fn compute_always(signal: Signal<bool>, interval: &Interval) -> ArgusResult<Sign
} else if interval.is_untimed() { } else if interval.is_untimed() {
compute_untimed_always(sig)? compute_untimed_always(sig)?
} else if let (Included(a), Included(b)) = interval.into() { } else if let (Included(a), Included(b)) = interval.into() {
compute_timed_always(sig, *a, Some(*b))? compute_timed_always::<I>(sig, *a, Some(*b))?
} else if let (Included(a), Unbounded) = interval.into() { } else if let (Included(a), Unbounded) = interval.into() {
compute_timed_always(sig, *a, None)? compute_timed_always::<I>(sig, *a, None)?
} else { } else {
unreachable!("interval should be created using Interval::new, and is_untimed checks this") unreachable!("interval should be created using Interval::new, and is_untimed checks this")
} }
@ -155,9 +157,13 @@ fn compute_always(signal: Signal<bool>, interval: &Interval) -> ArgusResult<Sign
} }
/// Compute timed always for the interval `[a, b]` (or, if `b` is `None`, `[a, ..]`. /// Compute timed always for the interval `[a, b]` (or, if `b` is `None`, `[a, ..]`.
fn compute_timed_always(signal: Signal<bool>, a: Duration, b: Option<Duration>) -> ArgusResult<Signal<bool>> { fn compute_timed_always<I: InterpolationMethod<bool>>(
signal: Signal<bool>,
a: Duration,
b: Option<Duration>,
) -> ArgusResult<Signal<bool>> {
let z1 = !signal; let z1 = !signal;
let z2 = compute_timed_eventually(z1, a, b)?; let z2 = compute_timed_eventually::<I>(z1, a, b)?;
Ok(!z2) Ok(!z2)
} }
@ -178,7 +184,10 @@ fn compute_untimed_always(signal: Signal<bool>) -> ArgusResult<Signal<bool>> {
} }
/// Compute eventually for a signal /// Compute eventually for a signal
fn compute_eventually(signal: Signal<bool>, interval: &Interval) -> ArgusResult<Signal<bool>> { fn compute_eventually<I: InterpolationMethod<bool>>(
signal: Signal<bool>,
interval: &Interval,
) -> ArgusResult<Signal<bool>> {
if interval.is_empty() || interval.is_singleton() { if interval.is_empty() || interval.is_singleton() {
return Err(ArgusError::InvalidInterval { return Err(ArgusError::InvalidInterval {
reason: "interval is either empty or singleton", reason: "interval is either empty or singleton",
@ -197,9 +206,9 @@ fn compute_eventually(signal: Signal<bool>, interval: &Interval) -> ArgusResult<
} else if interval.is_untimed() { } else if interval.is_untimed() {
compute_untimed_eventually(sig)? compute_untimed_eventually(sig)?
} else if let (Included(a), Included(b)) = interval.into() { } else if let (Included(a), Included(b)) = interval.into() {
compute_timed_eventually(sig, *a, Some(*b))? compute_timed_eventually::<I>(sig, *a, Some(*b))?
} else if let (Included(a), Unbounded) = interval.into() { } else if let (Included(a), Unbounded) = interval.into() {
compute_timed_eventually(sig, *a, None)? compute_timed_eventually::<I>(sig, *a, None)?
} else { } else {
unreachable!("interval should be created using Interval::new, and is_untimed checks this") unreachable!("interval should be created using Interval::new, and is_untimed checks this")
} }
@ -209,7 +218,11 @@ fn compute_eventually(signal: Signal<bool>, interval: &Interval) -> ArgusResult<
} }
/// Compute timed eventually for the interval `[a, b]` (or, if `b` is `None`, `[a,..]`. /// Compute timed eventually for the interval `[a, b]` (or, if `b` is `None`, `[a,..]`.
fn compute_timed_eventually(signal: Signal<bool>, a: Duration, b: Option<Duration>) -> ArgusResult<Signal<bool>> { fn compute_timed_eventually<I: InterpolationMethod<bool>>(
signal: Signal<bool>,
a: Duration,
b: Option<Duration>,
) -> ArgusResult<Signal<bool>> {
match b { match b {
Some(b) => { Some(b) => {
// We want to compute the windowed max/or of the signal. // We want to compute the windowed max/or of the signal.
@ -245,7 +258,7 @@ fn compute_timed_eventually(signal: Signal<bool>, a: Duration, b: Option<Duratio
} }
None => { None => {
// Shift the signal to the left by `a` and then run the untimed eventually. // Shift the signal to the left by `a` and then run the untimed eventually.
let shifted = signal.shift_left(a); let shifted = signal.shift_left::<I>(a);
compute_untimed_eventually(shifted) compute_untimed_eventually(shifted)
} }
} }
@ -268,18 +281,22 @@ fn compute_untimed_eventually(signal: Signal<bool>) -> ArgusResult<Signal<bool>>
} }
/// Compute until /// Compute until
fn compute_until(lhs: Signal<bool>, rhs: Signal<bool>, interval: &Interval) -> ArgusResult<Signal<bool>> { fn compute_until<I: InterpolationMethod<bool>>(
lhs: Signal<bool>,
rhs: Signal<bool>,
interval: &Interval,
) -> ArgusResult<Signal<bool>> {
let ret = match (lhs, rhs) { let ret = match (lhs, rhs) {
// If either signals are empty, return empty // If either signals are empty, return empty
(sig @ Signal::Empty, _) | (_, sig @ Signal::Empty) => sig, (sig @ Signal::Empty, _) | (_, sig @ Signal::Empty) => sig,
(lhs, rhs) => { (lhs, rhs) => {
use Bound::*; use Bound::*;
if interval.is_untimed() { if interval.is_untimed() {
compute_untimed_until(lhs, rhs)? compute_untimed_until::<I>(lhs, rhs)?
} else if let (Included(a), Included(b)) = interval.into() { } else if let (Included(a), Included(b)) = interval.into() {
compute_timed_until(lhs, rhs, *a, Some(*b))? compute_timed_until::<I>(lhs, rhs, *a, Some(*b))?
} else if let (Included(a), Unbounded) = interval.into() { } else if let (Included(a), Unbounded) = interval.into() {
compute_timed_until(lhs, rhs, *a, None)? compute_timed_until::<I>(lhs, rhs, *a, None)?
} else { } else {
unreachable!("interval should be created using Interval::new, and is_untimed checks this") unreachable!("interval should be created using Interval::new, and is_untimed checks this")
} }
@ -301,7 +318,7 @@ fn compute_until(lhs: Signal<bool>, rhs: Signal<bool>, interval: &Interval) -> A
/// $$ /// $$
/// ///
/// [1]: <> (A. Donzé, T. Ferrère, and O. Maler, "Efficient Robust Monitoring for STL.") /// [1]: <> (A. Donzé, T. Ferrère, and O. Maler, "Efficient Robust Monitoring for STL.")
fn compute_timed_until( fn compute_timed_until<I: InterpolationMethod<bool>>(
lhs: Signal<bool>, lhs: Signal<bool>,
rhs: Signal<bool>, rhs: Signal<bool>,
a: Duration, a: Duration,
@ -310,33 +327,36 @@ fn compute_timed_until(
match b { match b {
Some(b) => { Some(b) => {
// First compute eventually [a, b] // First compute eventually [a, b]
let ev_a_b_rhs = compute_timed_eventually(rhs.clone(), a, Some(b))?; let ev_a_b_rhs = compute_timed_eventually::<I>(rhs.clone(), a, Some(b))?;
// Then compute until [a, \infty) (lhs, rhs) // Then compute until [a, \infty) (lhs, rhs)
let unt_a_inf = compute_timed_until(lhs, rhs, a, None)?; let unt_a_inf = compute_timed_until::<I>(lhs, rhs, a, None)?;
// Then & them // Then & them
Ok(ev_a_b_rhs.min(&unt_a_inf)) Ok(ev_a_b_rhs.and::<I>(&unt_a_inf))
} }
None => { None => {
assert_ne!(a, Duration::ZERO, "untimed case wasn't handled for Until"); assert_ne!(a, Duration::ZERO, "untimed case wasn't handled for Until");
// First compute untimed until (lhs, rhs) // First compute untimed until (lhs, rhs)
let untimed_until = compute_untimed_until(lhs, rhs)?; let untimed_until = compute_untimed_until::<I>(lhs, rhs)?;
// Compute G [0, a] // Compute G [0, a]
compute_timed_always(untimed_until, Duration::ZERO, Some(a)) compute_timed_always::<I>(untimed_until, Duration::ZERO, Some(a))
} }
} }
} }
/// Compute untimed until /// Compute untimed until
fn compute_untimed_until(lhs: Signal<bool>, rhs: Signal<bool>) -> ArgusResult<Signal<bool>> { fn compute_untimed_until<I: InterpolationMethod<bool>>(
let sync_points = lhs.sync_with_intersection::<Linear>(&rhs).unwrap(); lhs: Signal<bool>,
rhs: Signal<bool>,
) -> ArgusResult<Signal<bool>> {
let sync_points = lhs.sync_with_intersection::<I>(&rhs).unwrap();
let mut ret_samples = Vec::with_capacity(sync_points.len()); let mut ret_samples = Vec::with_capacity(sync_points.len());
let expected_len = sync_points.len(); let expected_len = sync_points.len();
let mut next = false; let mut next = false;
for (i, t) in sync_points.into_iter().enumerate().rev() { for (i, t) in sync_points.into_iter().enumerate().rev() {
let v1 = lhs.interpolate_at::<Linear>(t).unwrap(); let v1 = lhs.interpolate_at::<I>(t).unwrap();
let v2 = rhs.interpolate_at::<Linear>(t).unwrap(); let v2 = rhs.interpolate_at::<I>(t).unwrap();
#[allow(clippy::nonminimal_bool)] #[allow(clippy::nonminimal_bool)]
let z = (v1 && v2) || (v1 && next); let z = (v1 && v2) || (v1 && next);
@ -355,6 +375,7 @@ mod tests {
use std::collections::HashMap; use std::collections::HashMap;
use argus_core::expr::ExprBuilder; use argus_core::expr::ExprBuilder;
use argus_core::signals::interpolation::Linear;
use argus_core::signals::AnySignal; use argus_core::signals::AnySignal;
use itertools::assert_equal; use itertools::assert_equal;

View file

@ -3,7 +3,6 @@ use std::time::Duration;
use argus_core::expr::*; use argus_core::expr::*;
use argus_core::prelude::*; use argus_core::prelude::*;
use argus_core::signals::interpolation::Linear;
use argus_core::signals::{InterpolationMethod, SignalAbs}; use argus_core::signals::{InterpolationMethod, SignalAbs};
use num_traits::{Num, NumCast}; use num_traits::{Num, NumCast};
@ -13,7 +12,10 @@ use crate::utils::lemire_minmax::MonoWedge;
pub struct QuantitativeSemantics; pub struct QuantitativeSemantics;
impl QuantitativeSemantics { impl QuantitativeSemantics {
pub fn eval<I: InterpolationMethod<f64>>(expr: &BoolExpr, trace: &impl Trace) -> ArgusResult<Signal<f64>> { pub fn eval<I>(expr: &BoolExpr, trace: &impl Trace) -> ArgusResult<Signal<f64>>
where
I: InterpolationMethod<f64>,
{
let ret = match expr { let ret = match expr {
BoolExpr::BoolLit(val) => top_or_bot(&Signal::constant(val.0)), BoolExpr::BoolLit(val) => top_or_bot(&Signal::constant(val.0)),
BoolExpr::BoolVar(BoolVar { name }) => trace BoolExpr::BoolVar(BoolVar { name }) => trace
@ -39,7 +41,7 @@ impl QuantitativeSemantics {
Signal::constant(f64::INFINITY), Signal::constant(f64::INFINITY),
|acc, item| { |acc, item| {
let item = item?; let item = item?;
Ok(acc.min(&item)) Ok(acc.min::<I>(&item))
}, },
)? )?
} }
@ -49,7 +51,7 @@ impl QuantitativeSemantics {
Signal::constant(f64::NEG_INFINITY), Signal::constant(f64::NEG_INFINITY),
|acc, item| { |acc, item| {
let item = item?; let item = item?;
Ok(acc.max(&item)) Ok(acc.max::<I>(&item))
}, },
)? )?
} }
@ -63,16 +65,16 @@ impl QuantitativeSemantics {
} }
BoolExpr::Always(Always { arg, interval }) => { BoolExpr::Always(Always { arg, interval }) => {
let arg = Self::eval::<I>(arg, trace)?; let arg = Self::eval::<I>(arg, trace)?;
compute_always(arg, interval)? compute_always::<I>(arg, interval)?
} }
BoolExpr::Eventually(Eventually { arg, interval }) => { BoolExpr::Eventually(Eventually { arg, interval }) => {
let arg = Self::eval::<I>(arg, trace)?; let arg = Self::eval::<I>(arg, trace)?;
compute_eventually(arg, interval)? compute_eventually::<I>(arg, interval)?
} }
BoolExpr::Until(Until { lhs, rhs, interval }) => { BoolExpr::Until(Until { lhs, rhs, interval }) => {
let lhs = Self::eval::<I>(lhs, trace)?; let lhs = Self::eval::<I>(lhs, trace)?;
let rhs = Self::eval::<I>(rhs, trace)?; let rhs = Self::eval::<I>(rhs, trace)?;
compute_until(lhs, rhs, interval)? compute_until::<I>(lhs, rhs, interval)?
} }
}; };
Ok(ret) Ok(ret)
@ -80,7 +82,7 @@ impl QuantitativeSemantics {
pub fn eval_num_expr<T, I>(root: &NumExpr, trace: &impl Trace) -> ArgusResult<Signal<T>> pub fn eval_num_expr<T, I>(root: &NumExpr, trace: &impl Trace) -> ArgusResult<Signal<T>>
where where
T: Num + NumCast + Clone, T: Num + NumCast + Clone + PartialOrd,
for<'a> &'a T: core::ops::Neg<Output = T>, for<'a> &'a T: core::ops::Neg<Output = T>,
for<'a> &'a T: core::ops::Add<&'a T, Output = T>, for<'a> &'a T: core::ops::Add<&'a T, Output = T>,
for<'a> &'a T: core::ops::Sub<&'a T, Output = T>, for<'a> &'a T: core::ops::Sub<&'a T, Output = T>,
@ -167,7 +169,7 @@ fn compute_oracle(arg: Signal<f64>, steps: usize) -> ArgusResult<Signal<f64>> {
} }
/// Compute always for a signal /// Compute always for a signal
fn compute_always(signal: Signal<f64>, interval: &Interval) -> ArgusResult<Signal<f64>> { fn compute_always<I: InterpolationMethod<f64>>(signal: Signal<f64>, interval: &Interval) -> ArgusResult<Signal<f64>> {
if interval.is_empty() || interval.is_singleton() { if interval.is_empty() || interval.is_singleton() {
return Err(ArgusError::InvalidInterval { return Err(ArgusError::InvalidInterval {
reason: "interval is either empty or singleton", reason: "interval is either empty or singleton",
@ -184,11 +186,11 @@ fn compute_always(signal: Signal<f64>, interval: &Interval) -> ArgusResult<Signa
// for singleton intervals, return the signal itself. // for singleton intervals, return the signal itself.
sig sig
} else if interval.is_untimed() { } else if interval.is_untimed() {
compute_untimed_always(sig)? compute_untimed_always::<I>(sig)?
} else if let (Included(a), Included(b)) = interval.into() { } else if let (Included(a), Included(b)) = interval.into() {
compute_timed_always(sig, *a, Some(*b))? compute_timed_always::<I>(sig, *a, Some(*b))?
} else if let (Included(a), Unbounded) = interval.into() { } else if let (Included(a), Unbounded) = interval.into() {
compute_timed_always(sig, *a, None)? compute_timed_always::<I>(sig, *a, None)?
} else { } else {
unreachable!("interval should be created using Interval::new, and is_untimed checks this") unreachable!("interval should be created using Interval::new, and is_untimed checks this")
} }
@ -198,21 +200,26 @@ fn compute_always(signal: Signal<f64>, interval: &Interval) -> ArgusResult<Signa
} }
/// Compute timed always for the interval `[a, b]` (or, if `b` is `None`, `[a, ..]`. /// Compute timed always for the interval `[a, b]` (or, if `b` is `None`, `[a, ..]`.
fn compute_timed_always(signal: Signal<f64>, a: Duration, b: Option<Duration>) -> ArgusResult<Signal<f64>> { fn compute_timed_always<I: InterpolationMethod<f64>>(
signal: Signal<f64>,
a: Duration,
b: Option<Duration>,
) -> ArgusResult<Signal<f64>> {
let z1 = signal.negate(); let z1 = signal.negate();
let z2 = compute_timed_eventually(z1, a, b)?; let z2 = compute_timed_eventually::<I>(z1, a, b)?;
Ok(z2.negate()) Ok(z2.negate())
} }
/// Compute untimed always /// Compute untimed always
fn compute_untimed_always(signal: Signal<f64>) -> ArgusResult<Signal<f64>> { fn compute_untimed_always<I: InterpolationMethod<f64>>(signal: Signal<f64>) -> ArgusResult<Signal<f64>> {
let Signal::Sampled { // Find all the points where the argument signal crosses 0
mut values, let Some(time_points) = signal.sync_with_intersection::<I>(&Signal::constant(0.0)) else {
time_points,
} = signal
else {
unreachable!("we shouldn't be passing non-sampled signals here") unreachable!("we shouldn't be passing non-sampled signals here")
}; };
let mut values: Vec<f64> = time_points
.iter()
.map(|&t| signal.interpolate_at::<I>(t).unwrap())
.collect();
// Compute the & in a expanding window fashion from the back // Compute the & in a expanding window fashion from the back
for i in (0..(time_points.len() - 1)).rev() { for i in (0..(time_points.len() - 1)).rev() {
values[i] = values[i + 1].min(values[i]); values[i] = values[i + 1].min(values[i]);
@ -221,7 +228,10 @@ fn compute_untimed_always(signal: Signal<f64>) -> ArgusResult<Signal<f64>> {
} }
/// Compute eventually for a signal /// Compute eventually for a signal
fn compute_eventually(signal: Signal<f64>, interval: &Interval) -> ArgusResult<Signal<f64>> { fn compute_eventually<I: InterpolationMethod<f64>>(
signal: Signal<f64>,
interval: &Interval,
) -> ArgusResult<Signal<f64>> {
if interval.is_empty() || interval.is_singleton() { if interval.is_empty() || interval.is_singleton() {
return Err(ArgusError::InvalidInterval { return Err(ArgusError::InvalidInterval {
reason: "interval is either empty or singleton", reason: "interval is either empty or singleton",
@ -238,11 +248,11 @@ fn compute_eventually(signal: Signal<f64>, interval: &Interval) -> ArgusResult<S
// for singleton intervals, return the signal itself. // for singleton intervals, return the signal itself.
sig sig
} else if interval.is_untimed() { } else if interval.is_untimed() {
compute_untimed_eventually(sig)? compute_untimed_eventually::<I>(sig)?
} else if let (Included(a), Included(b)) = interval.into() { } else if let (Included(a), Included(b)) = interval.into() {
compute_timed_eventually(sig, *a, Some(*b))? compute_timed_eventually::<I>(sig, *a, Some(*b))?
} else if let (Included(a), Unbounded) = interval.into() { } else if let (Included(a), Unbounded) = interval.into() {
compute_timed_eventually(sig, *a, None)? compute_timed_eventually::<I>(sig, *a, None)?
} else { } else {
unreachable!("interval should be created using Interval::new, and is_untimed checks this") unreachable!("interval should be created using Interval::new, and is_untimed checks this")
} }
@ -252,7 +262,11 @@ fn compute_eventually(signal: Signal<f64>, interval: &Interval) -> ArgusResult<S
} }
/// Compute timed eventually for the interval `[a, b]` (or, if `b` is `None`, `[a,..]`. /// Compute timed eventually for the interval `[a, b]` (or, if `b` is `None`, `[a,..]`.
fn compute_timed_eventually(signal: Signal<f64>, a: Duration, b: Option<Duration>) -> ArgusResult<Signal<f64>> { fn compute_timed_eventually<I: InterpolationMethod<f64>>(
signal: Signal<f64>,
a: Duration,
b: Option<Duration>,
) -> ArgusResult<Signal<f64>> {
match b { match b {
Some(b) => { Some(b) => {
// We want to compute the windowed max/or of the signal. // We want to compute the windowed max/or of the signal.
@ -288,21 +302,22 @@ fn compute_timed_eventually(signal: Signal<f64>, a: Duration, b: Option<Duration
} }
None => { None => {
// Shift the signal to the left by `a` and then run the untimed eventually. // Shift the signal to the left by `a` and then run the untimed eventually.
let shifted = signal.shift_left(a); let shifted = signal.shift_left::<I>(a);
compute_untimed_eventually(shifted) compute_untimed_eventually::<I>(shifted)
} }
} }
} }
/// Compute untimed eventually /// Compute untimed eventually
fn compute_untimed_eventually(signal: Signal<f64>) -> ArgusResult<Signal<f64>> { fn compute_untimed_eventually<I: InterpolationMethod<f64>>(signal: Signal<f64>) -> ArgusResult<Signal<f64>> {
let Signal::Sampled { // Find all the points where the argument signal crosses 0
mut values, let Some(time_points) = signal.sync_with_intersection::<I>(&Signal::constant(0.0)) else {
time_points,
} = signal
else {
unreachable!("we shouldn't be passing non-sampled signals here") unreachable!("we shouldn't be passing non-sampled signals here")
}; };
let mut values: Vec<f64> = time_points
.iter()
.map(|&t| signal.interpolate_at::<I>(t).unwrap())
.collect();
// Compute the | in a expanding window fashion from the back // Compute the | in a expanding window fashion from the back
for i in (0..(time_points.len() - 1)).rev() { for i in (0..(time_points.len() - 1)).rev() {
values[i] = values[i + 1].max(values[i]); values[i] = values[i + 1].max(values[i]);
@ -311,18 +326,22 @@ fn compute_untimed_eventually(signal: Signal<f64>) -> ArgusResult<Signal<f64>> {
} }
/// Compute until /// Compute until
fn compute_until(lhs: Signal<f64>, rhs: Signal<f64>, interval: &Interval) -> ArgusResult<Signal<f64>> { fn compute_until<I: InterpolationMethod<f64>>(
lhs: Signal<f64>,
rhs: Signal<f64>,
interval: &Interval,
) -> ArgusResult<Signal<f64>> {
let ret = match (lhs, rhs) { let ret = match (lhs, rhs) {
// If either signals are empty, return empty // If either signals are empty, return empty
(sig @ Signal::Empty, _) | (_, sig @ Signal::Empty) => sig, (sig @ Signal::Empty, _) | (_, sig @ Signal::Empty) => sig,
(lhs, rhs) => { (lhs, rhs) => {
use Bound::*; use Bound::*;
if interval.is_untimed() { if interval.is_untimed() {
compute_untimed_until(lhs, rhs)? compute_untimed_until::<I>(lhs, rhs)?
} else if let (Included(a), Included(b)) = interval.into() { } else if let (Included(a), Included(b)) = interval.into() {
compute_timed_until(lhs, rhs, *a, Some(*b))? compute_timed_until::<I>(lhs, rhs, *a, Some(*b))?
} else if let (Included(a), Unbounded) = interval.into() { } else if let (Included(a), Unbounded) = interval.into() {
compute_timed_until(lhs, rhs, *a, None)? compute_timed_until::<I>(lhs, rhs, *a, None)?
} else { } else {
unreachable!("interval should be created using Interval::new, and is_untimed checks this") unreachable!("interval should be created using Interval::new, and is_untimed checks this")
} }
@ -344,7 +363,7 @@ fn compute_until(lhs: Signal<f64>, rhs: Signal<f64>, interval: &Interval) -> Arg
/// $$ /// $$
/// ///
/// [1]: <> (A. Donzé, T. Ferrère, and O. Maler, "Efficient Robust Monitoring for STL.") /// [1]: <> (A. Donzé, T. Ferrère, and O. Maler, "Efficient Robust Monitoring for STL.")
fn compute_timed_until( fn compute_timed_until<I: InterpolationMethod<f64>>(
lhs: Signal<f64>, lhs: Signal<f64>,
rhs: Signal<f64>, rhs: Signal<f64>,
a: Duration, a: Duration,
@ -353,33 +372,33 @@ fn compute_timed_until(
match b { match b {
Some(b) => { Some(b) => {
// First compute eventually [a, b] // First compute eventually [a, b]
let ev_a_b_rhs = compute_timed_eventually(rhs.clone(), a, Some(b))?; let ev_a_b_rhs = compute_timed_eventually::<I>(rhs.clone(), a, Some(b))?;
// Then compute until [a, \infty) (lhs, rhs) // Then compute until [a, \infty) (lhs, rhs)
let unt_a_inf = compute_timed_until(lhs, rhs, a, None)?; let unt_a_inf = compute_timed_until::<I>(lhs, rhs, a, None)?;
// Then & them // Then & them
Ok(ev_a_b_rhs.min(&unt_a_inf)) Ok(ev_a_b_rhs.min::<I>(&unt_a_inf))
} }
None => { None => {
assert_ne!(a, Duration::ZERO, "untimed case wasn't handled for Until"); assert_ne!(a, Duration::ZERO, "untimed case wasn't handled for Until");
// First compute untimed until (lhs, rhs) // First compute untimed until (lhs, rhs)
let untimed_until = compute_untimed_until(lhs, rhs)?; let untimed_until = compute_untimed_until::<I>(lhs, rhs)?;
// Compute G [0, a] // Compute G [0, a]
compute_timed_always(untimed_until, Duration::ZERO, Some(a)) compute_timed_always::<I>(untimed_until, Duration::ZERO, Some(a))
} }
} }
} }
/// Compute untimed until /// Compute untimed until
fn compute_untimed_until(lhs: Signal<f64>, rhs: Signal<f64>) -> ArgusResult<Signal<f64>> { fn compute_untimed_until<I: InterpolationMethod<f64>>(lhs: Signal<f64>, rhs: Signal<f64>) -> ArgusResult<Signal<f64>> {
let sync_points = lhs.sync_with_intersection::<Linear>(&rhs).unwrap(); let sync_points = lhs.sync_with_intersection::<I>(&rhs).unwrap();
let mut ret_samples = Vec::with_capacity(sync_points.len()); let mut ret_samples = Vec::with_capacity(sync_points.len());
let expected_len = sync_points.len(); let expected_len = sync_points.len();
let mut next = f64::NEG_INFINITY; let mut next = f64::NEG_INFINITY;
for (i, t) in sync_points.into_iter().enumerate().rev() { for (i, t) in sync_points.into_iter().enumerate().rev() {
let v1 = lhs.interpolate_at::<Linear>(t).unwrap(); let v1 = lhs.interpolate_at::<I>(t).unwrap();
let v2 = rhs.interpolate_at::<Linear>(t).unwrap(); let v2 = rhs.interpolate_at::<I>(t).unwrap();
let z = f64::max(f64::min(v1, v2), f64::min(v1, next)); let z = f64::max(f64::min(v1, v2), f64::min(v1, next));
if z == next && i < (expected_len - 2) { if z == next && i < (expected_len - 2) {
@ -416,7 +435,7 @@ mod tests {
use std::time::Duration; use std::time::Duration;
use argus_core::expr::ExprBuilder; use argus_core::expr::ExprBuilder;
use argus_core::signals::interpolation::Constant; use argus_core::signals::interpolation::{Constant, Linear};
use argus_core::signals::AnySignal; use argus_core::signals::AnySignal;
use itertools::assert_equal; use itertools::assert_equal;