fix!: add explicit interpolation method for more functions
This commit is contained in:
parent
f97d593926
commit
91441d4d3f
7 changed files with 185 additions and 110 deletions
|
|
@ -1,29 +1,28 @@
|
|||
use std::cmp::Ordering;
|
||||
|
||||
use super::interpolation::Linear;
|
||||
use super::traits::SignalPartialOrd;
|
||||
use super::{InterpolationMethod, Signal};
|
||||
|
||||
impl<T> SignalPartialOrd for Signal<T>
|
||||
impl<T> SignalPartialOrd<T> for Signal<T>
|
||||
where
|
||||
T: PartialOrd + Clone,
|
||||
Linear: InterpolationMethod<T>,
|
||||
{
|
||||
fn signal_cmp<F>(&self, other: &Self, op: F) -> Option<Signal<bool>>
|
||||
fn signal_cmp<F, I>(&self, other: &Self, op: F) -> Option<Signal<bool>>
|
||||
where
|
||||
F: Fn(Ordering) -> bool,
|
||||
I: InterpolationMethod<T>,
|
||||
{
|
||||
// This has to be manually implemented and cannot use the apply2 functions.
|
||||
// This is because if we have two signals that cross each other, then there is
|
||||
// an intermediate point where the two signals are equal. This point must be
|
||||
// added to the signal appropriately.
|
||||
// the union of the sample points in self and other
|
||||
let sync_points = self.sync_with_intersection::<Linear>(other)?;
|
||||
let sync_points = self.sync_with_intersection::<I>(other)?;
|
||||
let sig: Option<Signal<bool>> = sync_points
|
||||
.into_iter()
|
||||
.map(|t| {
|
||||
let lhs = self.interpolate_at::<Linear>(t).unwrap();
|
||||
let rhs = other.interpolate_at::<Linear>(t).unwrap();
|
||||
let lhs = self.interpolate_at::<I>(t).unwrap();
|
||||
let rhs = other.interpolate_at::<I>(t).unwrap();
|
||||
let cmp = lhs.partial_cmp(&rhs);
|
||||
cmp.map(|v| (t, op(v)))
|
||||
})
|
||||
|
|
@ -35,16 +34,18 @@ where
|
|||
impl<T> Signal<T>
|
||||
where
|
||||
T: PartialOrd + Clone,
|
||||
Linear: InterpolationMethod<T>,
|
||||
{
|
||||
/// Compute the time-wise min of two signals
|
||||
pub fn min(&self, other: &Self) -> Self {
|
||||
let time_points = self.sync_with_intersection::<Linear>(other).unwrap();
|
||||
pub fn min<I>(&self, other: &Self) -> Self
|
||||
where
|
||||
I: InterpolationMethod<T>,
|
||||
{
|
||||
let time_points = self.sync_with_intersection::<I>(other).unwrap();
|
||||
time_points
|
||||
.into_iter()
|
||||
.map(|t| {
|
||||
let lhs = self.interpolate_at::<Linear>(t).unwrap();
|
||||
let rhs = other.interpolate_at::<Linear>(t).unwrap();
|
||||
let lhs = self.interpolate_at::<I>(t).unwrap();
|
||||
let rhs = other.interpolate_at::<I>(t).unwrap();
|
||||
if lhs < rhs {
|
||||
(t, lhs)
|
||||
} else {
|
||||
|
|
@ -55,13 +56,16 @@ where
|
|||
}
|
||||
|
||||
/// Compute the time-wise max of two signals
|
||||
pub fn max(&self, other: &Self) -> Self {
|
||||
let time_points = self.sync_with_intersection::<Linear>(other).unwrap();
|
||||
pub fn max<I>(&self, other: &Self) -> Self
|
||||
where
|
||||
I: InterpolationMethod<T>,
|
||||
{
|
||||
let time_points = self.sync_with_intersection::<I>(other).unwrap();
|
||||
time_points
|
||||
.into_iter()
|
||||
.map(|t| {
|
||||
let lhs = self.interpolate_at::<Linear>(t).unwrap();
|
||||
let rhs = other.interpolate_at::<Linear>(t).unwrap();
|
||||
let lhs = self.interpolate_at::<I>(t).unwrap();
|
||||
let rhs = other.interpolate_at::<I>(t).unwrap();
|
||||
if lhs > rhs {
|
||||
(t, lhs)
|
||||
} else {
|
||||
|
|
|
|||
|
|
@ -43,10 +43,10 @@ impl<T> Signal<T> {
|
|||
pub fn sub<U, I>(&self, other: &Signal<T>) -> Signal<U>
|
||||
where
|
||||
for<'t> &'t T: core::ops::Sub<Output = U>,
|
||||
T: Clone,
|
||||
T: Clone + PartialOrd,
|
||||
I: InterpolationMethod<T>,
|
||||
{
|
||||
self.binary_op::<_, _, I>(other, |u, v| u - v)
|
||||
self.binary_op_with_intersection::<_, _, I>(other, |u, v| u - v)
|
||||
}
|
||||
|
||||
/// Perform sample-wise division of the two signals.
|
||||
|
|
@ -86,7 +86,7 @@ impl<T> Signal<T> {
|
|||
T: Clone + PartialOrd,
|
||||
I: InterpolationMethod<T>,
|
||||
{
|
||||
self.binary_op::<_, _, I>(other, |u, v| if u < v { v - u } else { u - v })
|
||||
self.binary_op_with_intersection::<_, _, I>(other, |u, v| if u < v { v - u } else { u - v })
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -3,19 +3,17 @@ use core::time::Duration;
|
|||
|
||||
use itertools::Itertools;
|
||||
|
||||
use super::interpolation::Linear;
|
||||
use super::{InterpolationMethod, Signal};
|
||||
|
||||
impl<T> Signal<T>
|
||||
where
|
||||
T: Copy,
|
||||
Linear: InterpolationMethod<T>,
|
||||
{
|
||||
/// Shift all samples in the signal by `delta` amount to the left.
|
||||
///
|
||||
/// This essentially filters out all samples with time points greater than `delta`,
|
||||
/// and subtracts `delta` from the rest of the time points.
|
||||
pub fn shift_left(&self, delta: Duration) -> Self {
|
||||
pub fn shift_left<I: InterpolationMethod<T>>(&self, delta: Duration) -> Self {
|
||||
match self {
|
||||
Signal::Sampled { values, time_points } => {
|
||||
// We want to skip any time points < delta, and subtract the rest.
|
||||
|
|
@ -34,7 +32,7 @@ where
|
|||
if idx > 0 && first_t != &delta {
|
||||
// The shifted signal will not start at 0, and we have a previous
|
||||
// index to interpolate from.
|
||||
let v = self.interpolate_at::<Linear>(delta).unwrap();
|
||||
let v = self.interpolate_at::<I>(delta).unwrap();
|
||||
new_samples.push((Duration::ZERO, v));
|
||||
}
|
||||
// Shift the rest of the samples
|
||||
|
|
|
|||
|
|
@ -42,23 +42,27 @@ macro_rules! impl_signal_cmp {
|
|||
($cmp:ident) => {
|
||||
paste! {
|
||||
/// Compute the time-wise comparison of two signals
|
||||
fn [<signal_ $cmp>](&self, other: &Rhs) -> Option<Signal<bool>> {
|
||||
self.signal_cmp(other, |ord| ord.[<is_ $cmp>]())
|
||||
fn [<signal_ $cmp>]<I>(&self, other: &Rhs) -> Option<Signal<bool>>
|
||||
where
|
||||
I: InterpolationMethod<T>
|
||||
{
|
||||
self.signal_cmp::<_, I>(other, |ord| ord.[<is_ $cmp>]())
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/// A time-wise partial ordering defined for signals
|
||||
pub trait SignalPartialOrd<Rhs = Self> {
|
||||
pub trait SignalPartialOrd<T, Rhs = Self> {
|
||||
/// Compare two signals within each of their domains (using [`PartialOrd`]) and
|
||||
/// apply the given function `op` to the ordering to create a signal.
|
||||
///
|
||||
/// This function returns `None` if the comparison isn't possible, namely, when
|
||||
/// either of the signals are empty.
|
||||
fn signal_cmp<F>(&self, other: &Rhs, op: F) -> Option<Signal<bool>>
|
||||
fn signal_cmp<F, I>(&self, other: &Rhs, op: F) -> Option<Signal<bool>>
|
||||
where
|
||||
F: Fn(Ordering) -> bool;
|
||||
F: Fn(Ordering) -> bool,
|
||||
I: InterpolationMethod<T>;
|
||||
|
||||
impl_signal_cmp!(lt);
|
||||
impl_signal_cmp!(le);
|
||||
|
|
|
|||
|
|
@ -65,6 +65,35 @@ impl<T> Signal<T> {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn binary_op_with_intersection<U, F, Interp>(&self, other: &Signal<T>, op: F) -> Signal<U>
|
||||
where
|
||||
T: Clone + PartialOrd,
|
||||
F: Fn(&T, &T) -> U,
|
||||
Interp: InterpolationMethod<T>,
|
||||
{
|
||||
use Signal::*;
|
||||
match (self, other) {
|
||||
// If either of the signals are empty, we return an empty signal.
|
||||
(Empty, _) | (_, Empty) => Signal::Empty,
|
||||
(Constant { value: v1 }, Constant { value: v2 }) => Signal::constant(op(v1, v2)),
|
||||
(lhs, rhs) => {
|
||||
// We determine the range of the signal (as the output signal can only be
|
||||
// defined in the domain where both signals are defined).
|
||||
let time_points = lhs.sync_with_intersection::<Interp>(rhs).unwrap();
|
||||
// Now, at each of the merged time points, we sample each signal and operate on
|
||||
// them
|
||||
time_points
|
||||
.into_iter()
|
||||
.map(|t| {
|
||||
let v1 = lhs.interpolate_at::<Interp>(t).unwrap();
|
||||
let v2 = rhs.interpolate_at::<Interp>(t).unwrap();
|
||||
(t, op(&v1, &v2))
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn partial_min<T>(a: T, b: T) -> Option<T>
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue