refactor!(argus-core): remove unnecessary traits and Copy constraints
This commit is contained in:
parent
86cef692dc
commit
28a79cb88c
9 changed files with 255 additions and 271 deletions
|
|
@ -1,104 +1,186 @@
|
|||
use num_traits::Signed;
|
||||
|
||||
use super::interpolation::Linear;
|
||||
use super::traits::SignalAbs;
|
||||
use super::{FindIntersectionMethod, InterpolationMethod};
|
||||
use crate::signals::utils::{apply1, apply2};
|
||||
use super::{FindIntersectionMethod, InterpolationMethod, SignalAbs};
|
||||
use crate::signals::Signal;
|
||||
|
||||
impl<T> core::ops::Neg for &Signal<T>
|
||||
impl<T> core::ops::Neg for Signal<T>
|
||||
where
|
||||
T: Signed + Copy,
|
||||
T: core::ops::Neg<Output = T>,
|
||||
{
|
||||
type Output = Signal<T>;
|
||||
|
||||
/// Negate the signal at each time point
|
||||
fn neg(self) -> Self::Output {
|
||||
apply1(self, |v| -v)
|
||||
use Signal::*;
|
||||
match self {
|
||||
Empty => Signal::Empty,
|
||||
Constant { value } => Signal::constant(value.neg()),
|
||||
Sampled { values, time_points } => time_points.into_iter().zip(values.into_iter().map(|v| -v)).collect(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> core::ops::Add for &Signal<T>
|
||||
impl<T> core::ops::Neg for &Signal<T>
|
||||
where
|
||||
T: core::ops::Add<T, Output = T> + Copy,
|
||||
for<'a> &'a T: core::ops::Neg<Output = T>,
|
||||
{
|
||||
type Output = Signal<T>;
|
||||
|
||||
fn neg(self) -> Self::Output {
|
||||
use Signal::*;
|
||||
match self {
|
||||
Empty => Signal::Empty,
|
||||
Constant { value } => Signal::constant(value.neg()),
|
||||
Sampled { values, time_points } => time_points
|
||||
.iter()
|
||||
.copied()
|
||||
.zip(values.iter().map(|v| v.neg()))
|
||||
.collect(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> core::ops::Add<&Signal<T>> for Signal<T>
|
||||
where
|
||||
T: Clone,
|
||||
for<'a, 'b> &'a T: core::ops::Add<&'b T, Output = T>,
|
||||
Linear: InterpolationMethod<T>,
|
||||
{
|
||||
type Output = Signal<T>;
|
||||
|
||||
/// Add the given signal with another
|
||||
fn add(self, rhs: Self) -> Self::Output {
|
||||
apply2::<_, _, _, Linear>(self, rhs, |lhs, rhs| lhs + rhs)
|
||||
fn add(self, other: &Signal<T>) -> Signal<T> {
|
||||
self.binary_op::<_, _, Linear>(other, |lhs, rhs| lhs + rhs)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> core::ops::Mul for &Signal<T>
|
||||
impl<T> core::ops::Add<&Signal<T>> for &Signal<T>
|
||||
where
|
||||
T: core::ops::Mul<T, Output = T> + Copy,
|
||||
T: Clone,
|
||||
for<'a, 'b> &'a T: core::ops::Add<&'b T, Output = T>,
|
||||
Linear: InterpolationMethod<T>,
|
||||
{
|
||||
type Output = Signal<T>;
|
||||
|
||||
/// Add the given signal with another
|
||||
fn add(self, other: &Signal<T>) -> Signal<T> {
|
||||
self.binary_op::<_, _, Linear>(other, |lhs, rhs| lhs + rhs)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> core::ops::Mul<&Signal<T>> for Signal<T>
|
||||
where
|
||||
for<'a, 'b> &'a T: core::ops::Mul<&'b T, Output = T>,
|
||||
T: Clone,
|
||||
Linear: InterpolationMethod<T>,
|
||||
{
|
||||
type Output = Signal<T>;
|
||||
|
||||
/// Multiply the given signal with another
|
||||
fn mul(self, rhs: Self) -> Self::Output {
|
||||
apply2::<_, _, _, Linear>(self, rhs, |lhs, rhs| lhs * rhs)
|
||||
fn mul(self, rhs: &Signal<T>) -> Signal<T> {
|
||||
self.binary_op::<_, _, Linear>(rhs, |lhs, rhs| lhs * rhs)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> core::ops::Sub for &Signal<T>
|
||||
impl<T> core::ops::Mul<&Signal<T>> for &Signal<T>
|
||||
where
|
||||
T: core::ops::Sub<T, Output = T> + Copy + PartialOrd,
|
||||
for<'a, 'b> &'a T: core::ops::Mul<&'b T, Output = T>,
|
||||
T: Clone,
|
||||
Linear: InterpolationMethod<T>,
|
||||
{
|
||||
type Output = Signal<T>;
|
||||
|
||||
/// Multiply the given signal with another
|
||||
fn mul(self, rhs: &Signal<T>) -> Signal<T> {
|
||||
self.binary_op::<_, _, Linear>(rhs, |lhs, rhs| lhs * rhs)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> core::ops::Sub<&Signal<T>> for &Signal<T>
|
||||
where
|
||||
for<'a, 'b> &'a T: core::ops::Sub<&'b T, Output = T>,
|
||||
T: Clone + PartialOrd,
|
||||
Linear: InterpolationMethod<T> + FindIntersectionMethod<T>,
|
||||
{
|
||||
type Output = Signal<T>;
|
||||
|
||||
/// Subtract the given signal with another
|
||||
fn sub(self, rhs: Self) -> Self::Output {
|
||||
// This has to be manually implemented and cannot use the apply2 functions.
|
||||
fn sub(self, other: &Signal<T>) -> Signal<T> {
|
||||
// This has to be manually implemented and cannot use the binary_op functions.
|
||||
// This is because if we have two signals that cross each other, then there is
|
||||
// an intermediate point where the two signals are equal. This point must be
|
||||
// added to the signal appropriately.
|
||||
|
||||
// If either of the signals are empty, we return an empty signal.
|
||||
if self.is_empty() || rhs.is_empty() {
|
||||
return Signal::new();
|
||||
use Signal::*;
|
||||
match (self, other) {
|
||||
// If either of the signals are empty, we return an empty signal.
|
||||
(Empty, _) | (_, Empty) => Signal::Empty,
|
||||
(Constant { value: v1 }, Constant { value: v2 }) => Signal::constant(v1 - v2),
|
||||
(lhs, rhs) => {
|
||||
// the union of the sample points in self and other
|
||||
let sync_points = lhs.sync_with_intersection::<Linear>(rhs).unwrap();
|
||||
sync_points
|
||||
.into_iter()
|
||||
.map(|t| {
|
||||
let lhs = lhs.interpolate_at::<Linear>(t).unwrap();
|
||||
let rhs = rhs.interpolate_at::<Linear>(t).unwrap();
|
||||
(t, &lhs - &rhs)
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
}
|
||||
|
||||
// the union of the sample points in self and other
|
||||
let sync_points = self.sync_with_intersection::<Linear>(rhs).unwrap();
|
||||
sync_points
|
||||
.into_iter()
|
||||
.map(|t| {
|
||||
let lhs = self.interpolate_at::<Linear>(t).unwrap();
|
||||
let rhs = rhs.interpolate_at::<Linear>(t).unwrap();
|
||||
(t, lhs - rhs)
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> core::ops::Div for &Signal<T>
|
||||
impl<T> core::ops::Sub<&Signal<T>> for Signal<T>
|
||||
where
|
||||
T: core::ops::Div<T, Output = T> + Copy,
|
||||
for<'a, 'b> &'a T: core::ops::Sub<&'b T, Output = T>,
|
||||
T: Clone + PartialOrd,
|
||||
Linear: InterpolationMethod<T> + FindIntersectionMethod<T>,
|
||||
{
|
||||
type Output = Signal<T>;
|
||||
|
||||
/// Subtract the given signal with another
|
||||
fn sub(self, other: &Signal<T>) -> Signal<T> {
|
||||
<&Self as core::ops::Sub>::sub(&self, other)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> core::ops::Div<&Signal<T>> for Signal<T>
|
||||
where
|
||||
for<'a, 'b> &'a T: core::ops::Div<&'b T, Output = T>,
|
||||
T: Clone,
|
||||
Linear: InterpolationMethod<T>,
|
||||
{
|
||||
type Output = Signal<T>;
|
||||
|
||||
/// Divide the given signal with another
|
||||
fn div(self, rhs: Self) -> Self::Output {
|
||||
apply2::<_, _, _, Linear>(self, rhs, |lhs, rhs| lhs / rhs)
|
||||
fn div(self, rhs: &Signal<T>) -> Self {
|
||||
self.binary_op::<_, _, Linear>(rhs, |lhs, rhs| lhs / rhs)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> num_traits::Pow<Self> for &Signal<T>
|
||||
impl<T> core::ops::Div<&Signal<T>> for &Signal<T>
|
||||
where
|
||||
T: num_traits::Pow<T, Output = T> + Copy,
|
||||
for<'a, 'b> &'a T: core::ops::Div<&'b T, Output = T>,
|
||||
T: Clone,
|
||||
Linear: InterpolationMethod<T>,
|
||||
{
|
||||
type Output = Signal<T>;
|
||||
|
||||
/// Divide the given signal with another
|
||||
fn div(self, rhs: &Signal<T>) -> Signal<T> {
|
||||
self.binary_op::<_, _, Linear>(rhs, |lhs, rhs| lhs / rhs)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Signal<T>
|
||||
where
|
||||
for<'a, 'b> &'a T: num_traits::Pow<&'b T, Output = T>,
|
||||
T: Clone,
|
||||
Linear: InterpolationMethod<T>,
|
||||
{
|
||||
/// Returns the values in `self` to the power of the values in `other`
|
||||
fn pow(self, other: Self) -> Self::Output {
|
||||
apply2::<_, _, _, Linear>(self, other, |lhs, rhs| lhs.pow(rhs))
|
||||
pub fn pow(&self, other: &Self) -> Self {
|
||||
use num_traits::Pow;
|
||||
self.binary_op::<_, _, Linear>(other, |lhs, rhs| lhs.pow(rhs))
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -107,8 +189,8 @@ macro_rules! signal_abs_impl {
|
|||
$(
|
||||
impl SignalAbs for Signal<$ty> {
|
||||
/// Return the absolute value for each sample in the signal
|
||||
fn abs(&self) -> Signal<$ty> {
|
||||
apply1(self, |v| v.abs())
|
||||
fn abs(self) -> Signal<$ty> {
|
||||
self.unary_op(|v| v.abs())
|
||||
}
|
||||
}
|
||||
)*
|
||||
|
|
@ -119,7 +201,7 @@ signal_abs_impl!(i64, f32, f64);
|
|||
|
||||
impl SignalAbs for Signal<u64> {
|
||||
/// Return the absolute value for each sample in the signal
|
||||
fn abs(&self) -> Signal<u64> {
|
||||
apply1(self, |v| v)
|
||||
fn abs(self) -> Signal<u64> {
|
||||
self.unary_op(|v| v)
|
||||
}
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue