feat: add general signal types
This commit is contained in:
parent
cde8cb24e5
commit
22d19154af
5 changed files with 461 additions and 1 deletions
42
argus-core/src/signals/iter.rs
Normal file
42
argus-core/src/signals/iter.rs
Normal file
|
|
@ -0,0 +1,42 @@
|
|||
use std::iter::Zip;
|
||||
use std::time::Duration;
|
||||
|
||||
use super::Signal;
|
||||
|
||||
pub struct Iter<'a, T> {
|
||||
iter: Zip<core::slice::Iter<'a, Duration>, core::slice::Iter<'a, T>>,
|
||||
}
|
||||
|
||||
impl<'a, T> Iterator for Iter<'a, T> {
|
||||
type Item = (&'a Duration, &'a T);
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
self.iter.next()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, T> IntoIterator for &'a Signal<T> {
|
||||
type IntoIter = Iter<'a, T>;
|
||||
type Item = <Self::IntoIter as Iterator>::Item;
|
||||
|
||||
fn into_iter(self) -> Self::IntoIter {
|
||||
Iter {
|
||||
iter: self.time_points.iter().zip(self.values.iter()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> FromIterator<(Duration, T)> for Signal<T>
|
||||
where
|
||||
T: Copy,
|
||||
{
|
||||
/// Takes a sequence of sample points and creates a signal.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// If the input data does not contain strictly monotonically increasing time
|
||||
/// stamps. If this isn't desired, sort and deduplicate the input data.
|
||||
fn from_iter<I: IntoIterator<Item = (Duration, T)>>(iter: I) -> Self {
|
||||
Self::try_from_iter(iter).unwrap()
|
||||
}
|
||||
}
|
||||
158
argus-core/src/signals/traits.rs
Normal file
158
argus-core/src/signals/traits.rs
Normal file
|
|
@ -0,0 +1,158 @@
|
|||
use num_traits::Num;
|
||||
use std::{ops::RangeBounds, time::Duration};
|
||||
|
||||
use crate::ArgusResult;
|
||||
|
||||
use super::{InterpolationMethod, Sample};
|
||||
|
||||
/// A general Signal trait
|
||||
pub trait BaseSignal {
|
||||
/// Type of the values contained in the signal.
|
||||
///
|
||||
/// For example, a signal that implements `BaseSignal<Value = f64, ...>` contains a
|
||||
/// sequence of timestamped `f64` values.
|
||||
type Value;
|
||||
|
||||
/// A type that implements [`RangeBounds`] to determine the duration bounds of the
|
||||
/// signal.
|
||||
///
|
||||
/// In practice, this should only be either [`RangeFull`](core::ops::RangeFull)
|
||||
/// (returned by constant signals) or [`Range`](core::ops::Range) (returned by
|
||||
/// sampled signals).
|
||||
type Bounds: RangeBounds<Duration>;
|
||||
|
||||
/// Get the value of the signal at the given time point
|
||||
///
|
||||
/// If there exists a sample at the given time point then `Some(value)` is returned.
|
||||
/// Otherwise, `None` is returned. If the goal is to interpolate the value at the
|
||||
/// a given time, see [`interpolate_at`](Self::interpolate_at).
|
||||
fn at(&self, time: Duration) -> Option<&Self::Value>;
|
||||
|
||||
/// Interpolate the value of the signal at the given time point
|
||||
///
|
||||
/// If there exists a sample at the given time point then `Some(value)` is returned
|
||||
/// with the value of the signal at the point. Otherwise, a the
|
||||
/// [`InterpolationMethod`] is used to compute the value. If the given interpolation
|
||||
/// method cannot be used at the given time (for example, if we use
|
||||
/// [`InterpolationMethod::Linear`] and the `time` point is outside the signal
|
||||
/// domain), then a `None` is returned.
|
||||
fn interpolate_at(&self, time: Duration, interp: InterpolationMethod) -> Option<Self::Value>
|
||||
where
|
||||
Self::Value: Copy + LinearInterpolatable;
|
||||
|
||||
/// Get the bounds for the signal
|
||||
fn bounds(&self) -> Self::Bounds;
|
||||
|
||||
/// Push a new sample to the signal at the given time point
|
||||
///
|
||||
/// The method should enforce the invariant that the time points of the signal must
|
||||
/// have strictly monotonic increasing values, otherwise it returns an error without
|
||||
/// adding the sample point.
|
||||
///
|
||||
/// The result contains `true` if the sample was successfully added. For example,
|
||||
/// pusing a value to a [constant signal](crate::signals::constant) will be a no-op
|
||||
/// and return `false`.
|
||||
fn push(&mut self, time: Duration, value: Self::Value) -> ArgusResult<bool>;
|
||||
|
||||
/// Check if the signal is empty
|
||||
fn is_empty(&self) -> bool {
|
||||
use core::ops::Bound::*;
|
||||
let bounds = self.bounds();
|
||||
match (bounds.start_bound(), bounds.end_bound()) {
|
||||
(Included(start), Included(end)) => start > end,
|
||||
(Included(start), Excluded(end)) | (Excluded(start), Included(end)) | (Excluded(start), Excluded(end)) => {
|
||||
start >= end
|
||||
}
|
||||
|
||||
(Unbounded, Unbounded) => false,
|
||||
bound => unreachable!("Argus doesn't support signals with bound {:?}", bound),
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the time at which the given signal starts.
|
||||
fn start_time(&self) -> core::ops::Bound<Duration> {
|
||||
self.bounds().start_bound().cloned()
|
||||
}
|
||||
|
||||
/// Get the time at which the given signal ends.
|
||||
fn end_time(&self) -> core::ops::Bound<Duration> {
|
||||
self.bounds().end_bound().cloned()
|
||||
}
|
||||
}
|
||||
|
||||
/// A Boolean signal
|
||||
pub trait BaseBooleanSignal: BaseSignal {}
|
||||
|
||||
/// A numeric signal
|
||||
pub trait BaseNumericSignal: BaseSignal {
|
||||
type Value: Num;
|
||||
}
|
||||
|
||||
/// Trait for values that are linear interpolatable
|
||||
pub trait LinearInterpolatable {
|
||||
fn interpolate_at(a: &Sample<Self>, b: &Sample<Self>, time: Duration) -> Self
|
||||
where
|
||||
Self: Sized;
|
||||
}
|
||||
|
||||
impl LinearInterpolatable for bool {
|
||||
fn interpolate_at(a: &Sample<Self>, b: &Sample<Self>, time: Duration) -> Self
|
||||
where
|
||||
Self: Sized,
|
||||
{
|
||||
use InterpolationMethod::Nearest;
|
||||
assert!(a.time < time && time < b.time);
|
||||
// We can't linear interpolate a boolean, so we return the nearest.
|
||||
Nearest.at(time, &Some(*a), &Some(*b)).unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! interpolate_for_num {
|
||||
($ty:ty) => {
|
||||
impl LinearInterpolatable for $ty {
|
||||
fn interpolate_at(first: &Sample<Self>, second: &Sample<Self>, time: Duration) -> Self
|
||||
where
|
||||
Self: Sized,
|
||||
{
|
||||
use num_traits::cast;
|
||||
// We will need to cast the samples to f64 values (along with the time
|
||||
// window) to be able to interpolate correctly.
|
||||
// TODO(anand): Verify this works.
|
||||
let t1 = first.time.as_secs_f64();
|
||||
let t2 = second.time.as_secs_f64();
|
||||
let at = time.as_secs_f64();
|
||||
assert!((t1..=t2).contains(&at));
|
||||
|
||||
// We need to do stable linear interpolation
|
||||
// https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0811r3.html
|
||||
let a: f64 = cast(first.value).unwrap();
|
||||
let b: f64 = cast(second.value).unwrap();
|
||||
|
||||
// Set t to a value in [0, 1]
|
||||
let t = (at - t1) / (t2 - t1);
|
||||
assert!((0.0..=1.0).contains(&t));
|
||||
|
||||
let val = if (a <= 0.0 && b >= 0.0) || (a >= 0.0 && b <= 0.0) {
|
||||
t * b + (1.0 - t) * a
|
||||
} else if t == 1.0 {
|
||||
b
|
||||
} else {
|
||||
a + t * (b - a)
|
||||
};
|
||||
|
||||
cast(val).unwrap()
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
interpolate_for_num!(i8);
|
||||
interpolate_for_num!(i16);
|
||||
interpolate_for_num!(i32);
|
||||
interpolate_for_num!(i64);
|
||||
interpolate_for_num!(u8);
|
||||
interpolate_for_num!(u16);
|
||||
interpolate_for_num!(u32);
|
||||
interpolate_for_num!(u64);
|
||||
interpolate_for_num!(f32);
|
||||
interpolate_for_num!(f64);
|
||||
Loading…
Add table
Add a link
Reference in a new issue