feat!(core): Use new AST structure

Derive Expr methods using a derive proc-macro. These macros are present in
the `argus-derive` crate, but the traits are defined in `argus-core`
This commit is contained in:
Anand Balakrishnan 2023-06-06 10:44:45 -04:00
parent 70c5a50d22
commit 1c79847a77
No known key found for this signature in database
22 changed files with 958 additions and 702 deletions

View file

@ -0,0 +1,294 @@
//! Boolean expression types
use std::ops::{Bound, RangeBounds};
use std::time::Duration;
use super::{BoolExpr, Expr, NumExpr};
/// Types of comparison operations
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum Ordering {
/// Equality check for two expressions
Eq,
/// Non-equality check for two expressions
NotEq,
/// Less than check
Less {
/// Denotes `lhs < rhs` if `strict`, and `lhs <= rhs` otherwise.
strict: bool,
},
/// Greater than check
Greater {
/// Denotes `lhs > rhs` if `strict`, and `lhs >= rhs` otherwise.
strict: bool,
},
}
impl Ordering {
/// Check if `Ordering::Eq`
pub fn equal() -> Self {
Self::Eq
}
/// Check if `Ordering::NotEq`
pub fn not_equal() -> Self {
Self::NotEq
}
/// Check if `Ordering::Less { strict: true }`
pub fn less_than() -> Self {
Self::Less { strict: true }
}
/// Check if `Ordering::Less { strict: false }`
pub fn less_than_eq() -> Self {
Self::Less { strict: false }
}
/// Check if `Ordering::Greater { strict: true }`
pub fn greater_than() -> Self {
Self::Greater { strict: true }
}
/// Check if `Ordering::Less { strict: false }`
pub fn greater_than_eq() -> Self {
Self::Greater { strict: false }
}
}
/// A time interval for a temporal expression.
#[derive(Copy, Clone, Debug, PartialEq, Eq, derive_more::Into)]
#[into(owned, ref, ref_mut)]
pub struct Interval {
/// Start of the interval
pub start: Bound<Duration>,
/// End of the interval
pub end: Bound<Duration>,
}
impl Interval {
/// Create a new interval
///
/// # Note
///
/// Argus doesn't permit `Interval`s with [`Bound::Excluded(_)`] values (as these
/// can't be monitored reliably) and thus converts all such bounds to an
/// [`Bound::Included(_)`]. Moreover, if the `start` bound is [`Bound::Unbounded`],
/// it will get transformed to [`Bound::Included(Duration::ZERO)`].
pub fn new(start: Bound<Duration>, end: Bound<Duration>) -> Self {
use Bound::*;
let start = match start {
a @ Included(_) => a,
Excluded(b) => Included(b),
Unbounded => Included(Duration::ZERO),
};
let end = match end {
Excluded(b) => Included(b),
bound => bound,
};
Self { start, end }
}
/// Check if the interval is empty
#[inline]
pub fn is_empty(&self) -> bool {
use Bound::*;
match (&self.start, &self.end) {
(Included(a), Included(b)) => a > b,
(Included(a), Excluded(b)) | (Excluded(a), Included(b)) | (Excluded(a), Excluded(b)) => a >= b,
(Unbounded, Excluded(b)) => b == &Duration::ZERO,
_ => false,
}
}
/// Check if the interval is a singleton
///
/// This implies that only 1 timepoint is valid within this interval.
#[inline]
pub fn is_singleton(&self) -> bool {
use Bound::*;
match (&self.start, &self.end) {
(Included(a), Included(b)) => a == b,
(Unbounded, Included(b)) => b == &Duration::ZERO,
_ => false,
}
}
/// Check if the interval covers `[0, ..)`.
#[inline]
pub fn is_untimed(&self) -> bool {
use Bound::*;
match (self.start, self.end) {
(Unbounded, Unbounded) | (Included(Duration::ZERO), Unbounded) => true,
(Included(_), Included(_)) | (Included(_), Unbounded) => false,
(Excluded(_), _) | (_, Excluded(_)) | (Unbounded, _) => {
unreachable!("looks like someone didn't use Interval::new")
}
}
}
}
impl<T> From<T> for Interval
where
T: RangeBounds<Duration>,
{
fn from(value: T) -> Self {
Self::new(value.start_bound().cloned(), value.end_bound().cloned())
}
}
// TODO(anand): Can I implement this within argus_derive?
macro_rules! impl_bool_expr {
($ty:ty$(, $($arg:ident),* )? ) => {
impl Expr for $ty {
fn is_numeric(&self) -> bool {
false
}
fn is_boolean(&self) -> bool {
true
}
fn args(&self) -> Vec<super::ExprRef<'_>> {
vec![$($( self.$arg.as_ref().into(), )* )*]
}
}
};
($ty:ty, [$args:ident]) => {
impl Expr for $ty {
fn is_numeric(&self) -> bool {
false
}
fn is_boolean(&self) -> bool {
true
}
fn args(&self) -> Vec<super::ExprRef<'_>> {
self.$args.iter().map(|arg| arg.into()).collect()
}
}
};
}
/// A `bool` literal
#[derive(Clone, Debug, PartialEq, argus_derive::BoolExpr)]
pub struct BoolLit(pub bool);
impl_bool_expr!(BoolLit);
/// A `bool` variable
#[derive(Clone, Debug, PartialEq, argus_derive::BoolExpr)]
pub struct BoolVar {
/// Variable name
pub name: String,
}
impl_bool_expr!(BoolVar);
/// A comparison expression
#[derive(Clone, Debug, PartialEq, argus_derive::BoolExpr)]
pub struct Cmp {
/// The type of comparison
pub op: Ordering,
/// The LHS for the comparison
pub lhs: Box<NumExpr>,
/// The RHS for the comparison
pub rhs: Box<NumExpr>,
}
impl_bool_expr!(Cmp, lhs, rhs);
/// Logical negation of an expression
#[derive(Clone, Debug, PartialEq, argus_derive::BoolExpr)]
pub struct Not {
/// Expression to be negated
pub arg: Box<BoolExpr>,
}
impl_bool_expr!(Not, arg);
/// Logical conjunction of a list of expressions
#[derive(Clone, Debug, PartialEq, argus_derive::BoolExpr)]
pub struct And {
/// Expressions to be "and"-ed
pub args: Vec<BoolExpr>,
}
impl_bool_expr!(And, [args]);
/// Logical disjunction of a list of expressions
#[derive(Clone, Debug, PartialEq, argus_derive::BoolExpr)]
pub struct Or {
/// Expressions to be "or"-ed
pub args: Vec<BoolExpr>,
}
impl_bool_expr!(Or, [args]);
/// A temporal next expression
///
/// Checks if the next time point in a signal is `true` or not.
#[derive(Clone, Debug, PartialEq, argus_derive::BoolExpr)]
pub struct Next {
/// Argument for `Next`
pub arg: Box<BoolExpr>,
}
impl_bool_expr!(Next, arg);
/// Temporal "oracle" expression
///
/// This is equivalent to `steps` number of nested [`Next`](BoolExpr::Next)
/// expressions.
#[derive(Clone, Debug, PartialEq, argus_derive::BoolExpr)]
pub struct Oracle {
/// Number of steps to look ahead
pub steps: usize,
/// Argument for `Oracle`
pub arg: Box<BoolExpr>,
}
impl_bool_expr!(Oracle, arg);
/// A temporal always expression
///
/// - If the `interval` is `(Unbounded, Unbounded)` or equivalent to `(0, Unbounded)`:
/// checks if the signal is `true` for all points in a signal.
/// - Otherwise: checks if the signal is `true` for all points within the `interval`.
#[derive(Clone, Debug, PartialEq, argus_derive::BoolExpr)]
pub struct Always {
/// Argument for `Always`
pub arg: Box<BoolExpr>,
/// Interval for the expression
pub interval: Interval,
}
impl_bool_expr!(Always, arg);
/// A temporal eventually expression
///
/// - If the `interval` is `(Unbounded, Unbounded)` or equivalent to `(0, Unbounded)`:
/// checks if the signal is `true` for some point in a signal.
/// - Otherwise: checks if the signal is `true` for some point within the `interval`.
#[derive(Clone, Debug, PartialEq, argus_derive::BoolExpr)]
pub struct Eventually {
/// Argument for `Eventually`
pub arg: Box<BoolExpr>,
/// Interval for the expression
pub interval: Interval,
}
impl_bool_expr!(Eventually, arg);
/// A temporal until expression
///
/// Checks if the `lhs` is always `true` for a signal until `rhs` becomes `true`.
#[derive(Clone, Debug, PartialEq, argus_derive::BoolExpr)]
pub struct Until {
/// LHS to `lhs Until rhs`
pub lhs: Box<BoolExpr>,
/// RHS to `lhs Until rhs`
pub rhs: Box<BoolExpr>,
/// Interval for the expression
pub interval: Interval,
}
impl_bool_expr!(Until, lhs, rhs);

View file

@ -1,71 +0,0 @@
use std::ops::{BitAnd, BitOr, Not};
use super::{internal_macros, BoolExpr};
impl Not for BoolExpr {
type Output = BoolExpr;
fn not(self) -> Self::Output {
BoolExpr::Not { arg: Box::new(self) }
}
}
impl Not for Box<BoolExpr> {
type Output = BoolExpr;
fn not(self) -> Self::Output {
BoolExpr::Not { arg: self }
}
}
impl BitOr for BoolExpr {
type Output = BoolExpr;
#[inline]
fn bitor(self, rhs: Self) -> Self::Output {
use BoolExpr::*;
match (self, rhs) {
(Or { args: mut left }, Or { args: mut right }) => {
left.append(&mut right);
Or { args: left }
}
(Or { mut args }, other) | (other, Or { mut args }) => {
args.push(other);
Or { args }
}
(left, right) => {
let args = vec![left, right];
Or { args }
}
}
}
}
internal_macros::forward_box_binop! {impl BitOr, bitor for BoolExpr, BoolExpr }
impl BitAnd for BoolExpr {
type Output = BoolExpr;
#[inline]
fn bitand(self, rhs: Self) -> Self::Output {
use BoolExpr::*;
match (self, rhs) {
(And { args: mut left }, And { args: mut right }) => {
left.append(&mut right);
And { args: left }
}
(And { mut args }, other) | (other, And { mut args }) => {
args.push(other);
And { args }
}
(left, right) => {
let args = vec![left, right];
And { args }
}
}
}
}
internal_macros::forward_box_binop! {impl BitAnd, bitand for BoolExpr, BoolExpr }

View file

@ -1,32 +0,0 @@
macro_rules! forward_box_binop {
(impl $imp:ident, $method:ident for $t:ty, $u:ty) => {
impl $imp<$u> for Box<$t> {
type Output = <$t as $imp<$u>>::Output;
#[inline]
fn $method(self, other: $u) -> <$t as $imp<$u>>::Output {
$imp::$method(*self, other)
}
}
impl $imp<Box<$u>> for $t {
type Output = <$t as $imp<$u>>::Output;
#[inline]
fn $method(self, other: Box<$u>) -> <$t as $imp<$u>>::Output {
$imp::$method(self, *other)
}
}
impl $imp<Box<$u>> for Box<$t> {
type Output = <$t as $imp<$u>>::Output;
#[inline]
fn $method(self, other: Box<$u>) -> <$t as $imp<$u>>::Output {
$imp::$method(*self, *other)
}
}
};
}
pub(crate) use forward_box_binop;

View file

@ -47,7 +47,7 @@ impl<'a> Iterator for AstIter<'a> {
mod tests {
use itertools::Itertools;
use crate::expr::{Expr, ExprBuilder, ExprRef};
use crate::expr::{ExprBuilder, ExprRef};
#[test]
fn simple_iter() {

View file

@ -0,0 +1,128 @@
//! Numeric expression types
use super::{Expr, NumExpr};
// TODO(anand): Can I implement this within argus_derive?
macro_rules! impl_num_expr {
($ty:ty$(, $($arg:ident),* )? ) => {
impl Expr for $ty {
fn is_numeric(&self) -> bool {
true
}
fn is_boolean(&self) -> bool {
false
}
fn args(&self) -> Vec<super::ExprRef<'_>> {
vec![$($( self.$arg.as_ref().into(), )* )*]
}
}
};
($ty:ty, [$args:ident]) => {
impl Expr for $ty {
fn is_numeric(&self) -> bool {
false
}
fn is_boolean(&self) -> bool {
true
}
fn args(&self) -> Vec<super::ExprRef<'_>> {
self.$args.iter().map(|arg| arg.into()).collect()
}
}
};
}
/// A signed integer literal
#[derive(Clone, Debug, PartialEq, argus_derive::NumExpr)]
pub struct IntLit(pub i64);
impl_num_expr!(IntLit);
/// An unsigned integer literal
#[derive(Clone, Debug, PartialEq, argus_derive::NumExpr)]
pub struct UIntLit(pub u64);
impl_num_expr!(UIntLit);
/// A floating point literal
#[derive(Clone, Debug, PartialEq, argus_derive::NumExpr)]
pub struct FloatLit(pub f64);
impl_num_expr!(FloatLit);
/// A signed integer variable
#[derive(Clone, Debug, PartialEq, argus_derive::NumExpr)]
pub struct IntVar {
/// Name of the variable
pub name: String,
}
impl_num_expr!(IntVar);
/// A unsigned integer variable
#[derive(Clone, Debug, PartialEq, argus_derive::NumExpr)]
pub struct UIntVar {
/// Name of the variable
pub name: String,
}
impl_num_expr!(UIntVar);
/// A floating point number variable
#[derive(Clone, Debug, PartialEq, argus_derive::NumExpr)]
pub struct FloatVar {
/// Name of the variable
pub name: String,
}
impl_num_expr!(FloatVar);
/// Numeric negation of a numeric expression
#[derive(Clone, Debug, PartialEq, argus_derive::NumExpr)]
pub struct Neg {
/// Numeric expression being negated
pub arg: Box<NumExpr>,
}
impl_num_expr!(Neg, arg);
/// Arithmetic addition of a list of numeric expressions
#[derive(Clone, Debug, PartialEq, argus_derive::NumExpr)]
pub struct Add {
/// List of expressions being added
pub args: Vec<NumExpr>,
}
impl_num_expr!(Add, [args]);
/// Subtraction of two numbers
#[derive(Clone, Debug, PartialEq, argus_derive::NumExpr)]
pub struct Sub {
/// LHS to the expression `lhs - rhs`
pub lhs: Box<NumExpr>,
/// RHS to the expression `lhs - rhs`
pub rhs: Box<NumExpr>,
}
impl_num_expr!(Sub, lhs, rhs);
/// Arithmetic multiplication of a list of numeric expressions
#[derive(Clone, Debug, PartialEq, argus_derive::NumExpr)]
pub struct Mul {
/// List of expressions being multiplied
pub args: Vec<NumExpr>,
}
impl_num_expr!(Mul, [args]);
/// Divide two expressions `dividend / divisor`
#[derive(Clone, Debug, PartialEq, argus_derive::NumExpr)]
pub struct Div {
/// The dividend
pub dividend: Box<NumExpr>,
/// The divisor
pub divisor: Box<NumExpr>,
}
impl_num_expr!(Div, dividend, divisor);
/// The absolute value of an expression
#[derive(Clone, Debug, PartialEq, argus_derive::NumExpr)]
pub struct Abs {
/// Argument to `abs`
pub arg: Box<NumExpr>,
}
impl_num_expr!(Abs, arg);

View file

@ -1,146 +0,0 @@
use std::ops::{Add, Div, Mul, Neg};
use super::{internal_macros, BoolExpr, NumExpr};
impl Neg for NumExpr {
type Output = NumExpr;
#[inline]
fn neg(self) -> Self::Output {
NumExpr::Neg { arg: Box::new(self) }
}
}
impl Neg for Box<NumExpr> {
type Output = NumExpr;
#[inline]
fn neg(self) -> Self::Output {
NumExpr::Neg { arg: self }
}
}
impl Add for NumExpr {
type Output = NumExpr;
#[inline]
fn add(self, rhs: Self) -> Self::Output {
use NumExpr::*;
match (self, rhs) {
(Add { args: mut left }, Add { args: mut right }) => {
left.append(&mut right);
Add { args: left }
}
(Add { mut args }, other) | (other, Add { mut args }) => {
args.push(other);
Add { args }
}
(left, right) => {
let args = vec![left, right];
Add { args }
}
}
}
}
internal_macros::forward_box_binop! {impl Add, add for NumExpr, NumExpr }
impl Mul for NumExpr {
type Output = NumExpr;
#[inline]
fn mul(self, rhs: Self) -> Self::Output {
use NumExpr::*;
match (self, rhs) {
(Mul { args: mut left }, Mul { args: mut right }) => {
left.append(&mut right);
Mul { args: left }
}
(Mul { mut args }, other) | (other, Mul { mut args }) => {
args.push(other);
Mul { args }
}
(left, right) => {
let args = vec![left, right];
Mul { args }
}
}
}
}
internal_macros::forward_box_binop! {impl Mul, mul for NumExpr, NumExpr }
impl Div for NumExpr {
type Output = NumExpr;
#[inline]
fn div(self, rhs: Self) -> Self::Output {
use NumExpr::*;
Div {
dividend: Box::new(self),
divisor: Box::new(rhs),
}
}
}
internal_macros::forward_box_binop! {impl Div, div for NumExpr, NumExpr }
use super::Ordering;
impl NumExpr {
/// Convenience method to create an `lhs < rhs` expression.
pub fn less_than(self, rhs: Self) -> BoolExpr {
BoolExpr::Cmp {
op: Ordering::Less { strict: true },
lhs: Box::new(self),
rhs: Box::new(rhs),
}
}
/// Convenience method to create an `lhs <= rhs` expression.
pub fn less_than_eq(self, rhs: Self) -> BoolExpr {
BoolExpr::Cmp {
op: Ordering::Less { strict: false },
lhs: Box::new(self),
rhs: Box::new(rhs),
}
}
/// Convenience method to create an `lhs > rhs` expression.
pub fn greater_than(self, rhs: Self) -> BoolExpr {
BoolExpr::Cmp {
op: Ordering::Greater { strict: true },
lhs: Box::new(self),
rhs: Box::new(rhs),
}
}
/// Convenience method to create an `lhs >= rhs` expression.
pub fn greater_than_eq(self, rhs: Self) -> BoolExpr {
BoolExpr::Cmp {
op: Ordering::Greater { strict: false },
lhs: Box::new(self),
rhs: Box::new(rhs),
}
}
/// Convenience method to create an `lhs == rhs` expression.
pub fn equal(self, rhs: Self) -> BoolExpr {
BoolExpr::Cmp {
op: Ordering::Eq,
lhs: Box::new(self),
rhs: Box::new(rhs),
}
}
/// Convenience method to create an `lhs != rhs` expression.
pub fn not_equal(self, rhs: Self) -> BoolExpr {
BoolExpr::Cmp {
op: Ordering::NotEq,
lhs: Box::new(self),
rhs: Box::new(rhs),
}
}
}

View file

@ -1,9 +1,9 @@
use std::any::Any;
use enum_dispatch::enum_dispatch;
use super::iter::AstIter;
use super::ExprRef;
use super::{BoolExpr, ExprRef, NumExpr};
/// A trait representing expressions
#[enum_dispatch]
pub trait Expr {
/// Check if the given expression is a numeric expression
fn is_numeric(&self) -> bool;
@ -14,48 +14,10 @@ pub trait Expr {
/// If the expression doesn't contain arguments (i.e., it is a leaf expression) then
/// the vector is empty.
fn args(&self) -> Vec<ExprRef<'_>>;
/// Helper function for upcasting to [`std::any::Any`] and then downcasting to a
/// concrete [`BoolExpr`](crate::expr::BoolExpr) or
/// [`NumExpr`](crate::expr::NumExpr).
fn as_any(&self) -> &dyn Any;
/// An iterator over the AST starting from the current expression.
fn iter(&self) -> AstIter<'_>;
}
impl dyn Expr {
/// Convenience method to downcast an expression to a concrete expression node.
pub fn downcast_expr_ref<T>(&self) -> Option<&T>
where
T: Any,
{
self.as_any().downcast_ref::<T>()
}
}
/// Marker trait for numeric expressions
pub trait IsNumExpr: Expr + Into<NumExpr> {}
#[cfg(test)]
mod tests {
use proptest::prelude::*;
use super::super::{arbitrary, BoolExpr, NumExpr};
use super::*;
proptest! {
#[test]
fn downcast_expr_bool(bool_expr in arbitrary::bool_expr()) {
let expr_ref = bool_expr.as_ref() as &dyn Expr;
let downcast_ref = expr_ref.downcast_expr_ref::<BoolExpr>().unwrap();
assert_eq!(downcast_ref, bool_expr.as_ref());
}
}
proptest! {
#[test]
fn downcast_expr_num(num_expr in arbitrary::num_expr()) {
let expr_ref = num_expr.as_ref() as &dyn Expr;
let downcast_ref = expr_ref.downcast_expr_ref::<NumExpr>().unwrap();
assert_eq!(downcast_ref, num_expr.as_ref());
}
}
}
/// Marker trait for Boolean expressions
pub trait IsBoolExpr: Expr + Into<BoolExpr> {}